Using auto‐regressive logit models to forecast the exceedance probability for financial risk management

We present new autoregressive logit models for forecasting the probability of a time series of financial asset returns exceeding a threshold. The models can be estimated by maximizing a Bernoulli likelihood. Alternatively, to account for the extent to which an observation does or does not exceed the threshold, we propose that the likelihood is based on the asymmetric Laplace distribution, which has been found to be useful for quantile estimation. We incorporate the exceedance probability forecasts within a new time-varying extreme value approach to value at risk and expected shortfall estimation. We provide empirical illustration using daily stock index data.

[1]  Pentti Saikkonen,et al.  Predicting U.S. Recessions with Dynamic Binary Response Models , 2008, The Review of Economics and Statistics.

[2]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[3]  Henri Nyberg,et al.  Forecasting the direction of the US stock market with dynamic binary probit models , 2011 .

[4]  Takashi Kanamura,et al.  A Structural Model for Electricity Prices with Spikes - Measurement of Jump Risk and Optimal Policies for Hydropower Plant Operation , 2004 .

[5]  Roger Koenker,et al.  Inference for Quantile Regression , 2005 .

[6]  Turan G. Bali,et al.  Disturbing extremal behavior of spot rate dynamics , 2003 .

[7]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[8]  R. Koenker Quantile Regression: Name Index , 2005 .

[9]  Daniel S. Wilks,et al.  Sampling distributions of the Brier score and Brier skill score under serial dependence , 2010 .

[10]  A. Davison,et al.  Generalized additive modelling of sample extremes , 2005 .

[11]  Anthony C. Davison,et al.  Generalized additive models for sample extremes , 2005 .

[12]  T. Gneiting,et al.  Combining probability forecasts , 2010 .

[13]  Yongmiao Hong,et al.  Model-Free Evaluation of Directional Predictability in Foreign Exchange Markets , 2007 .

[14]  Oliver Linton,et al.  The quantilogram: With an application to evaluating directional predictability , 2007 .

[15]  Uma Moorthy,et al.  Predicting Emerging Market Currency Crashes , 2002 .

[16]  P. Green Penalized Likelihood for General Semi-Parametric Regression Models. , 1987 .

[17]  Nicholas E. Graham,et al.  Conditional Exceedance Probabilities , 2007 .

[18]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[19]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[20]  R. Engle,et al.  CAViaR , 1999 .

[21]  Stanislav Anatolyev,et al.  Modeling Financial Return Dynamics via Decomposition , 2010 .

[22]  Neil Shephard,et al.  Dynamics of Trade-by-Trade Price Movements: Decomposition and Models , 1999 .

[23]  P. Embrechts,et al.  An Academic Response to Basel 3.5 , 2014 .

[24]  D. Thomakos,et al.  ‘Optimal’ probabilistic and directional predictions of financial returns ☆ , 2010 .

[25]  Francis X. Diebold,et al.  The Rodney L. White Center for Financial Research Financial Asset Returns, Direction-of-Change Forecasting and Volatility , 2003 .

[26]  Julian Stander,et al.  Bayesian analysis of a Tobit quantile regression model , 2007 .

[27]  Tilmann Gneiting,et al.  Editorial: Probabilistic forecasting , 2008 .

[28]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[29]  Robert M. de Jong,et al.  DYNAMIC TIME SERIES BINARY CHOICE , 2011, Econometric Theory.

[30]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[31]  Keming Yu,et al.  A Three-Parameter Asymmetric Laplace Distribution and Its Extension , 2005 .

[32]  Sylvain Sardy,et al.  Extreme-Quantile Tracking for Financial Time Series , 2014 .

[33]  Simone Manganelli,et al.  Value at Risk Models in Finance , 2001, SSRN Electronic Journal.

[34]  Marc S. Paolella,et al.  A Fast, Accurate Method for Value at Risk and Expected Shortfall , 2014 .

[35]  M. Peat,et al.  Measures of the economic value of probabilities of bankruptcy , 2013 .

[36]  C. Granger,et al.  Economic and Statistical Measures of Forecast Accuracy , 1999 .

[37]  Tempei Hashino,et al.  Sampling Uncertainty and Confidence Intervals for the Brier Score and Brier Skill Score , 2008 .