Stable calculation of Gaussian-based RBF-FD stencils

Traditional finite difference (FD) methods are designed to be exact for low degree polynomials. They can be highly effective on Cartesian-type grids, but may fail for unstructured node layouts. Radial basis function-generated finite difference (RBF-FD) methods overcome this problem and, as a result, provide a much improved geometric flexibility. The calculation of RBF-FD weights involves a shape parameter @e. Small values of @e (corresponding to near-flat RBFs) often lead to particularly accurate RBF-FD formulas. However, the most straightforward way to calculate the weights (RBF-Direct) becomes then numerically highly ill-conditioned. In contrast, the present algorithm remains numerically stable all the way into the @e->0 limit. Like the RBF-QR algorithm, it uses the idea of finding a numerically well-conditioned basis function set in the same function space as is spanned by the ill-conditioned near-flat original Gaussian RBFs. By exploiting some properties of the incomplete gamma function, it transpires that the change of basis can be achieved without dealing with any infinite expansions. Its strengths and weaknesses compared with the Contour-Pade, RBF-RA, and RBF-QR algorithms are discussed.

[1]  Bengt Fornberg,et al.  Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..

[2]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[3]  G. Fasshauer,et al.  STABLE EVALUATION OF GAUSSIAN RBF INTERPOLANTS , 2011 .

[4]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[5]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..

[6]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[7]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[8]  B. Fornberg CALCULATION OF WEIGHTS IN FINITE DIFFERENCE FORMULAS∗ , 1998 .

[9]  Bengt Fornberg,et al.  Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..

[10]  David Stevens,et al.  The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems , 2009, J. Comput. Phys..

[11]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[12]  Bengt Fornberg,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .

[13]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[14]  B. Fornberg,et al.  Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .

[15]  Oleg Davydov,et al.  On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation , 2011, Comput. Math. Appl..

[16]  Elisabeth Larsson,et al.  Stable computations with Gaussian radial basis functions in 2-D , 2009 .

[17]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[18]  C. Shu,et al.  Application of Local MQ-DQ Method to Solve 3D Incompressible Viscous Flows with Curved Boundary , 2008 .

[19]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[20]  Elisabeth Larsson,et al.  A new class of oscillatory radial basis functions , 2006, Comput. Math. Appl..

[21]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[22]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[23]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[24]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[25]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[26]  L. Trefethen,et al.  Robust rational interpolation and least-squares , 2011 .

[27]  Elisabeth Larsson,et al.  Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions , 2013, SIAM J. Sci. Comput..

[28]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[29]  P. Nair,et al.  A compact RBF-FD based meshless method for the incompressible Navier—Stokes equations , 2009 .