Stable calculation of Gaussian-based RBF-FD stencils
暂无分享,去创建一个
[1] Bengt Fornberg,et al. Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..
[2] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[3] G. Fasshauer,et al. STABLE EVALUATION OF GAUSSIAN RBF INTERPOLANTS , 2011 .
[4] Bengt Fornberg,et al. Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..
[5] Bengt Fornberg,et al. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..
[6] A. I. Tolstykh,et al. On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .
[7] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[8] B. Fornberg. CALCULATION OF WEIGHTS IN FINITE DIFFERENCE FORMULAS∗ , 1998 .
[9] Bengt Fornberg,et al. Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..
[10] David Stevens,et al. The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems , 2009, J. Comput. Phys..
[11] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[12] Bengt Fornberg,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .
[13] R. Schaback. Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .
[14] B. Fornberg,et al. Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .
[15] Oleg Davydov,et al. On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation , 2011, Comput. Math. Appl..
[16] Elisabeth Larsson,et al. Stable computations with Gaussian radial basis functions in 2-D , 2009 .
[17] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..
[18] C. Shu,et al. Application of Local MQ-DQ Method to Solve 3D Incompressible Viscous Flows with Curved Boundary , 2008 .
[19] Erik Lehto,et al. A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..
[20] Elisabeth Larsson,et al. A new class of oscillatory radial basis functions , 2006, Comput. Math. Appl..
[21] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[22] B. Fornberg,et al. A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .
[23] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[24] C. Shu,et al. Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .
[25] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[26] L. Trefethen,et al. Robust rational interpolation and least-squares , 2011 .
[27] Elisabeth Larsson,et al. Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions , 2013, SIAM J. Sci. Comput..
[28] B. Fornberg,et al. Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .
[29] P. Nair,et al. A compact RBF-FD based meshless method for the incompressible Navier—Stokes equations , 2009 .