Generalized Hénon maps: the cubic diffeomorphisms of the plane

Abstract In general a polynomial diffeomorphism of the plane can be transformed into a composition of generalized Henon maps. These maps exhibit some of the familiar properties of the quadratic Henon map, including a bounded set of bounded orbits and an anti-integrable limit. We investigate in particular the cubic, area-preserving case, which reduces to two, two-parameter families of maps. The bifurcations of low period orbits of these maps are discussed in detail.

[1]  J. Lamb,et al.  Time-reversal symmetry in dynamical systems: a survey , 1998 .

[2]  R. Rimmer Symmetry and bifurcation of fixed points of area preserving maps , 1978 .

[3]  S. Aubry Anti-integrability in dynamic and variational problems , 1995 .

[4]  Miles Reid,et al.  Cremona transformations : in plane and space , 1928 .

[5]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[6]  James D. Meiss,et al.  Computing periodic orbits using the anti-integrable limit , 1998, chao-dyn/9802014.

[7]  R. MacKay Equivariant universality classes , 1984 .

[8]  Walter Rudin,et al.  Injective Polynomial Maps Are Automorphisms , 1995 .

[9]  James D. Meiss,et al.  Cantori for symplectic maps near the anti-integrable limit , 1992 .

[10]  J. Kovalevsky,et al.  Lectures in celestial mechanics , 1989 .

[11]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[12]  S. Wang A Jacobian criterion for separability , 1980 .

[13]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[14]  Virgil Snyder,et al.  Cremona Transformations in Plane and Space. , 1927 .

[15]  Heinrich W. E. Jung Über ganze birationale Transformationen der Ebene. , 1942 .

[16]  H. Bass,et al.  The Jacobian conjecture: Reduction of degree and formal expansion of the inverse , 1982 .

[17]  Kenneth R. Meyer,et al.  Stability of equilibria and fixed points of conservative systems , 1999 .

[18]  M. Baake,et al.  Reversing symmetry group of and matrices with connections to cat maps and trace maps , 1997 .

[19]  A. Dragt,et al.  Symplectic maps and computation of orbits in particle accelerators , 1996 .

[20]  Shmuel Friedland,et al.  Dynamical properties of plane polynomial automorphisms , 1989, Ergodic Theory and Dynamical Systems.

[21]  W. Engel Ganze Cremona-Transformationen von Primzahlgrad in der Ebene , 1958 .

[22]  Étienne Forest,et al.  Beam Dynamics: A New Attitude and Framework , 1998 .

[23]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[24]  J. Meiss,et al.  Generic twistless bifurcations , 1999, chao-dyn/9901025.

[25]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[26]  M. Barge,et al.  Recurrent Sets for Planar Homeomorphisms , 1993 .

[27]  J. H. Mckay,et al.  An elementary proof of the automorphism theorem for the polynomial ring in two variables , 1988 .

[28]  G. Meisters Annotated Bibliography on Polynomial Maps , 1997 .

[29]  A. Essen Seven Lectures on Polynomial Automorphisms , 1995 .