Updated Electron-Conduction Opacities: The Impact on Low-Mass Stellar Models

We review the theory of electron-conduction opacity, a fundamental ingredient in the computation of low-mass stellar models; shortcomings and limitations of the existing calculations used in stellar evolution are discussed. We then present new determinations of the electron-conduction opacity in stellar conditions for an arbitrary chemical composition that improve over previous works and, most importantly, cover the whole parameter space relevant to stellar evolution models (i.e., both the regime of partial and high electron degeneracy). A detailed comparison with the currently used tabulations is also performed. The impact of our new opacities on the evolution of low-mass stars is assessed by computing stellar models along both the H- and He-burning evolutionary phases, as well as main sequence models of very low-mass stars and white dwarf cooling tracks.

[1]  G. Piotto,et al.  Galactic globular clusters as a test for very-low-mass stellar models , 2000, astro-ph/0003003.

[2]  R. Marshak The Internal Temperature of White Dwarf Stars. , 1940 .

[3]  Pethick,et al.  Transport and relaxation in degenerate quark plasmas. , 1993, Physical review. D, Particles and fields.

[4]  Young,et al.  Analytic fit to the one-component-plasma structure factor. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[5]  Wendy L. Freedman,et al.  The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies , 1993 .

[6]  B. Hansen,et al.  Cooling Models for Old White Dwarfs , 1999, astro-ph/9903025.

[7]  A. Renzini,et al.  Tests of evolutionary sequences using color-magnitude diagrams of globular clusters , 1988 .

[8]  W. Hubbard,et al.  THERMAL CONDUCTION BY ELECTRONS IN STELLAR MATTER. , 1969 .

[9]  H. Hayashi,et al.  Electrical and thermal conductivities of dense matter in the crystalline lattice phase. III: Inclusion of lower densities , 1993 .

[10]  M. Catelán,et al.  The Helium-Core Mass at the Helium Flash in Low-Mass Red Giant Stars: Observations and Theory , 1995, astro-ph/9509062.

[11]  Walter A. Harrison,et al.  Electrons and Phonons , 2000 .

[12]  N. Itoh,et al.  Electrical and Thermal Conductivities of Dense Matter in the Crystalline Lattice Phase. II. Impurity Scattering , 1993 .

[13]  Galactic Globular Cluster Relative Ages , 1999, astro-ph/0503594.

[14]  H. Iyetomi,et al.  Electrical and thermal conductivities of dense matter in the liquid metal phase. I - High-temperature results , 1983 .

[15]  P. Moroni,et al.  Calibration of White Dwarf Cooling Sequences: Theoretical Uncertainty , 2002, astro-ph/0209045.

[16]  G. Chabrier,et al.  Equation of state of fully ionized electron-ion plasmas. II. Extension To relativistic densities and to the solid phase , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  M. Irwin,et al.  The initial helium content of Galactic globular cluster stars from the R-parameter : Comparison with the cosmic microwave background constraint , 2003, astro-ph/0301378.

[18]  N. Itoh,et al.  Electrical and thermal conductivities of dense matter in the crystalline lattice phase , 1984 .

[19]  N. Itoh,et al.  Transport properties of dense matter , 1976 .

[20]  N. Itoh,et al.  Electrical and thermal conductivities of dense matter in the liquid metal phase. II - Low-temperature quantum corrections , 1984 .

[21]  U. California,et al.  Variability in the Thermal Emission from Accreting Neutron Star Transients , 2002, astro-ph/0204102.

[22]  W. Hubbard STUDIES IN STELLAR EVOLUTION. V. TRANSPORT COEFFICIENTS OF DEGENERATE STELLAR MATTER. , 1966 .

[23]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[24]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[25]  M. D. Barriga-Carrasco Influence of target plasma nuclei collisions on correlated motion of fragmented H2+ protons , 2006 .

[26]  O. Gnedin,et al.  Thermal relaxation in young neutron stars , 2000, astro-ph/0012306.

[27]  D. G. Yakovlev,et al.  Thermal and electrical conductivities of crystals in neutron stars and degenerate dwarfs , 1982 .

[28]  B. Paczynski,et al.  Cluster AgeS Experiment: The Age and Distance of the Globular Cluster ω Centauri Determined from Observations of the Eclipsing Binary OGLEGC 17 , 2000, astro-ph/0012493.

[29]  V. University,et al.  The Ages of Very Cool Hydrogen-rich White Dwarfs , 2000, astro-ph/0007031.

[30]  I. Iben Age and Initial Helium Abundance of Stars in the Globular Cluster M15 , 1968, Nature.

[31]  The Initial Helium Abundance of the Galactic Globular Cluster System , 2004, astro-ph/0403600.

[32]  M. Lampe TRANSPORT THEORY OF A PARTIALLY DEGENERATE PLASMA. , 1968 .

[33]  I. Baraffe,et al.  Theory of Low-Mass Stars and Substellar Objects , 2000 .

[34]  A homogeneous set of globular cluster relative distances and reddenings , 2004, astro-ph/0408462.

[35]  S. Cassisi,et al.  A new analysis of the red giant branch ‘tip’ distance scale and the value of the Hubble constant , 1998, astro-ph/9803103.

[36]  N. Itoh,et al.  Transport properties of dense matter. III - Analytic formulae for thermal conductivity , 1981 .

[37]  European Southern Observatory,et al.  A Step toward the Calibration of the Red Giant Branch Tip as a Standard Candle , 2001 .

[38]  E.P.J. van den Heuvel,et al.  The Neutron Star-Black Hole Connection , 2001 .

[39]  S. Cassisi,et al.  Red Giant Branch Stars: The Theoretical Framework , 2002, astro-ph/0201387.

[40]  M. Castellani,et al.  RR Lyrae Stars in Galactic Globular Clusters. II. A Theoretical Approach to Variables in M3 , 2003, astro-ph/0306356.