Photoconductivity of Er-doped InAs quantum dots embedded in strain-relaxed InGaAs layers with 1.5 µm cw and pulse excitation

We fabricated a photoconductive antenna structure utilizing Er-doped InAs quantum dot layers embedded in strain-relaxed In0.35Ga0.65As layers on a GaAs substrate. Mesa-shaped electrodes for the antenna structure were formed by photolithography and wet etching in order to suppress its dark current. We measured the photocurrent with the excitation of ~1.5 µm cw and femtosecond pulse lasers. Compared with the dark current, the photocurrent was clearly observed under both cw and pulse excitation conditions and almost linearly increased with increasing excitation power in a wide range of magnitudes from 10 W/cm2 to 10 MW/cm2 order.

[1]  T. Jones,et al.  Optimizing the growth of 1.3 μm InAs/GaAs quantum dots , 2001 .

[2]  M. Tani,et al.  GENERATION OF COHERENT TERAHERTZ RADIATION BY PHOTOMIXING IN DIPOLE PHOTOCONDUCTIVE ANTENNAS , 1997 .

[3]  O. B. McMahon,et al.  Terahertz photomixing with diode lasers in low‐temperature‐grown GaAs , 1995 .

[4]  E. H. C. Parker,et al.  The Technology and physics of molecular beam epitaxy , 1985 .

[5]  M. Tani,et al.  Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. , 1997, Applied optics.

[6]  W. R. Tribe,et al.  Terahertz pulsed imaging with 1.06 μm laser excitation , 2003 .

[7]  Gerard Mourou,et al.  Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures , 1991 .

[8]  P. Frigeri,et al.  OPTICAL PROPERTIES OF INAS QUANTUM DOTS : COMMON TRENDS , 1999 .

[9]  A. Tünnermann,et al.  Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation , 2015 .

[10]  Gerhard Abstreiter,et al.  Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots , 1999 .

[11]  D. Saeedkia,et al.  Terahertz Generation and Detection Using Low Temperature Grown InGaAs-InAlAs Photoconductive Antennas at 1.55 $\mu{\hbox{m}}$ Pulse Excitation , 2012, IEEE Transactions on Terahertz Science and Technology.

[12]  Jiro Kitagawa,et al.  Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56μm pulse excitation , 2007 .

[13]  Terahertz Wave Generation from GaP with Continuous Wave and Pulse Pumping in the 1–1.2 μm Region , 2007 .

[14]  Hiroshi Harima,et al.  Spectroscopic Characterization of Low-Temperature Grown GaAs Epitaxial Films , 1994 .

[15]  G. Witt LTMBE GaAs: present status and perspectives , 1993 .

[16]  Mikhail V. Maximov,et al.  Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates , 1999 .

[17]  M. Tani,et al.  Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses , 2000 .

[18]  B. Sartorius,et al.  Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers. , 2010, Optics express.

[19]  M. Tani,et al.  Ultrafast Photoconductive Detectors Based on Semi-Insulating GaAs and InP , 1997 .

[20]  K. Nishi,et al.  Shape transition of InAs quantum dots by growth at high temperature , 1999 .

[21]  Arthur C. Gossard,et al.  Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm , 2010 .

[22]  J. Whitaker,et al.  Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures , 1992 .

[23]  C. L. Dennis,et al.  Photomixing up to 3.8 THz in low‐temperature‐grown GaAs , 1995 .

[24]  T. Isu,et al.  Fast carrier relaxation of self-assembled InAs quantum dots embedded in strain-relaxed In0.35Ga0.65As barriers for ultrafast nonlinear optical switching applications , 2009 .

[25]  Masahiro Tsuchiya,et al.  Nonlinear absorption of highly stacked InAs quantum dot layers on an InP(311) substrate , 2006, SPIE Optics East.

[26]  M. Koch,et al.  Low Temperature Grown Be-doped InGaAs/InAlAs Photoconductive Antennas Excited at 1030 nm , 2013 .

[27]  Arthur C. Gossard,et al.  Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55 μm , 2003 .

[28]  T. Kaizu,et al.  Stranski-Krastanov Growth of InAs Quantum Dots with Narrow Size Distribution , 2000 .

[29]  W. R. Tribe,et al.  High resistivity annealed low-temperature GaAs with 100 fs lifetimes , 2003 .

[30]  David T. D. Childs,et al.  Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy , 2000 .

[31]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[32]  Masahiro Tsuchiya,et al.  Saturable absorption of highly stacked InAs quantum dot layer in 1.5μm band , 2006 .

[33]  P. Bhattacharya,et al.  Subpicosecond photoresponse of carriers in low‐temperature molecular beam epitaxial In0.52Al0.48As/InP , 1990 .

[34]  A. R. Kovsh,et al.  InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .

[35]  B. Sartorius,et al.  All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths. , 2008, Optics express.

[36]  Andreas Stintz,et al.  Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots , 2002 .

[37]  Ray Murray,et al.  Time resolved study of self‐assembled InAs quantum dots , 1996 .