Shear and extensional deformation of droplets containing polymers and nanoparticles.

We investigate the effects of polymer chains and nanoparticles on the deformation of a droplet in shear and extensional flow using computational modeling that accounts for both the solid and fluid phases explicitly. We show that under shear flow, both the nanoparticles and the encapsulated polymers reduce the shear-induced deformation of the droplet at intermediate capillary numbers. At high capillary numbers, however, long polymer chains can induce the breakup of the droplet. We find that the latter behavior is dependent on the nature of the imposed flow. Specifically, under extensional flow, long polymers inhibit the droplet breakup and reduce deformation. Overall, the findings provide guidelines for tailoring the stability of filled droplets under an imposed flow, and thus, the results can provide useful design rules in a range of technological applications.

[1]  O. B. Usta,et al.  Effect of encapsulated polymers and nanoparticles on shear deformation of droplets , 2009 .

[2]  Y. Renardy Effect of startup conditions on drop breakup under shear with inertia , 2008 .

[3]  Masao Doi,et al.  Fluidic trapping of deformable polymers in microflows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  U. Sundararaj,et al.  Does drop size affect the mechanism of viscoelastic drop breakup , 2008 .

[5]  R. G. M. van der Sman,et al.  Emulsion droplet deformation and breakup with Lattice Boltzmann model , 2008, Comput. Phys. Commun..

[6]  Kausik Sarkar,et al.  Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear , 2007, Journal of Fluid Mechanics.

[7]  Ulf D. Schiller,et al.  Statistical mechanics of the fluctuating lattice Boltzmann equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  M E Cates,et al.  Singular forces and pointlike colloids in lattice Boltzmann hydrodynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Kathleen Feigl,et al.  Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants , 2007 .

[10]  Patrick Patrick Anderson,et al.  Boundary-integral method for drop deformation between parallel plates , 2007 .

[11]  Yuriko Renardy,et al.  Development and implementation of VOF-PROST for 3D viscoelastic liquid–liquid simulations , 2006 .

[12]  Kausik Sarkar,et al.  Rheology of an emulsion of viscoelastic drops in steady shear , 2006 .

[13]  J. Cooper-White,et al.  Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration , 2006 .

[14]  R. Verberg,et al.  Modeling the flow of fluid/particle mixtures in microchannels: encapsulating nanoparticles within monodisperse droplets. , 2005, The Journal of chemical physics.

[15]  Jie Shen,et al.  Transient drop deformation upon startup of shear in viscoelastic fluids , 2005 .

[16]  Petia M. Vlahovska,et al.  Deformation of a surfactant-covered drop in a linear flow , 2005 .

[17]  Jie Shen,et al.  Viscoelastic effects on drop deformation in steady shear , 2005, Journal of Fluid Mechanics.

[18]  R. Verberg,et al.  Modeling the flow of complex fluids through heterogeneous channels , 2005 .

[19]  A. Ladd,et al.  Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. , 2005, The Journal of chemical physics.

[20]  J. Cooper-White,et al.  Capillary Break-up Rheometry of Low-Viscosity Elastic Fluids , 2005 .

[21]  Stefano Guido,et al.  Break-up of a Newtonian drop in a viscoelastic matrix under simple shear flow , 2004 .

[22]  Nhan Phan-Thien,et al.  Dissipative particle dynamics simulation of polymer drops in a periodic shear flow , 2004 .

[23]  M. Cates,et al.  Fluctuating lattice Boltzmann , 2004, cond-mat/0402598.

[24]  C. L. Tucker,et al.  Theory for drop deformation in viscoelastic systems , 2004 .

[25]  Stefano Guido,et al.  Deformation of a Newtonian drop in a viscoelastic matrix under steady shear flow: Experimental validation of slow flow theory , 2003 .

[26]  V. Cristini,et al.  Drop breakup and fragment size distribution in shear flow , 2003 .

[27]  Wei-Chung Yu,et al.  Ellipsoidal model for droplet deformation in emulsions , 2003 .

[28]  C. L. Tucker,et al.  A model for large deformation of an ellipsoidal droplet with interfacial tension , 2003 .

[29]  M. Fontelos,et al.  Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study , 2003 .

[30]  Takaji Inamuro,et al.  LATTICE BOLTZMANN SIMULATIONS OF DROP DEFORMATION AND BREAKUP IN SHEAR FLOWS , 2003 .

[31]  M. Cates,et al.  Role of inertia in two-dimensional deformation and breakdown of a droplet. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  R. Larson,et al.  Brownian dynamics simulations of isolated polymer molecules in shear flow near adsorbing and nonadsorbing surfaces , 2002 .

[33]  L. Walker,et al.  Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance , 2002 .

[34]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[35]  L. G. Leal,et al.  Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid , 2001 .

[36]  G. G. Peters,et al.  Constitutive modeling of dispersive mixtures , 2001 .

[37]  D. Bonn,et al.  Inhibition of the finite-time singularity during droplet fission of a polymeric fluid. , 2001, Physical review letters.

[38]  J. Derby,et al.  Transient polymeric drop extension and retraction in uniaxial extensional flows , 2001 .

[39]  C. L. Tucker,et al.  Droplet deformation in dispersions with unequal viscosities and zero interfacial tension , 2001, Journal of Fluid Mechanics.

[40]  R. Larson,et al.  A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends , 2000 .

[41]  L. G. Leal,et al.  The deformation of a Newtonian drop in the uniaxial extensional flow of a viscoelastic liquid , 1999 .

[42]  L. G. Leal,et al.  The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid , 1999 .

[43]  A. Balazs,et al.  Phase separation under shear of binary mixtures containing hard particles , 1999 .

[44]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[45]  D. Tretheway,et al.  Surfactant and viscoelastic effects on drop deformation in 2‐D extensional flow , 1999 .

[46]  Douglas E. Smith,et al.  Single-polymer dynamics in steady shear flow. , 1999, Science.

[47]  Pierre J. Carreau,et al.  Influence of elastic properties on drop deformation and breakup in shear flow , 1998 .

[48]  Stefano Guido,et al.  Three-dimensional shape of a drop under simple shear flow , 1998 .

[49]  Pier Luca Maffettone,et al.  Equation of change for ellipsoidal drops in viscous flow , 1998 .

[50]  Pierre J. Carreau,et al.  Influence of elastic properties on drop deformation in elongational flow , 1997 .

[51]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  K. Stebe,et al.  Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants , 1996 .

[53]  Jgm Hans Kuerten,et al.  A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow , 1995 .

[54]  Y. Shiwa THEORY OF POLYMER RELAXATION TIMES IN SEMI-DILUTE SOLUTIONS , 1995 .

[55]  M. E. Ryan,et al.  Experimental study of the breakup of model viscoelastic drops in uniform shear flow , 1994 .

[56]  R. Skalak,et al.  Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow , 1994 .

[57]  L. G. Leal,et al.  A note on the effect of vorticity on the deformation and breakup of polymer drops , 1992 .

[58]  L. G. Leal,et al.  An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows , 1986, Journal of Fluid Mechanics.

[59]  J. J. Elmendorp,et al.  A study on polymer blending microrheology: Part 1† , 1985 .

[60]  Andreas Acrivos,et al.  THE BREAKUP OF SMALL DROPS AND BUBBLES IN SHEAR FLOWS * , 1983 .

[61]  H. P. Grace DISPERSION PHENOMENA IN HIGH VISCOSITY IMMISCIBLE FLUID SYSTEMS AND APPLICATION OF STATIC MIXERS AS DISPERSION DEVICES IN SUCH SYSTEMS , 1982 .

[62]  J. M. Rallison A numerical study of the deformation and burst of a viscous drop in general shear flows , 1981, Journal of Fluid Mechanics.

[63]  Andreas Acrivos,et al.  Long slender drops in a simple shear flow , 1980, Journal of Fluid Mechanics.

[64]  A. Acrivos,et al.  A numerical study of the deformation and burst of a viscous drop in an extensional flow , 1978, Journal of Fluid Mechanics.

[65]  Andreas Acrivos,et al.  Deformation and burst of a liquid droplet freely suspended in a linear shear field , 1973, Journal of Fluid Mechanics.

[66]  R. Flumerfelt Drop Breakup in Simple Shear Fields of Viscoleastic Fluids , 1972 .

[67]  R. G. Cox,et al.  Particle motions in sheared suspensions XXVII. Transient and steady deformation and burst of liquid drops , 1972 .

[68]  F. Gauthier,et al.  Particle Motions in Non‐Newtonian Media. II. Poiseuille Flow , 1971 .

[69]  R. G. Cox The deformation of a drop in a general time-dependent fluid flow , 1969, Journal of Fluid Mechanics.

[70]  S. G. Mason,et al.  Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow , 1961 .

[71]  Geoffrey Ingram Taylor,et al.  The formation of emulsions in definable fields of flow , 1934 .

[72]  Geoffrey Ingram Taylor,et al.  The Viscosity of a Fluid Containing Small Drops of Another Fluid , 1932 .

[73]  R. Larson,et al.  Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/poly(dimethyl siloxane) blends , 2003 .

[74]  F. Greco,et al.  Effects of matrix viscoelasticity on drop deformation in dilute polymer blends under slow shear flow , 2003 .

[75]  Howard A. Stone,et al.  Dynamics of Drop Deformation and Breakup in Viscous Fluids , 1994 .

[76]  D. Bousfield,et al.  Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments , 1986 .

[77]  J. M. Rallison The Deformation of Small Viscous Drops and Bubbles in Shear Flows , 1984 .

[78]  J. Parlange,et al.  Spherical-Cap Bubbles , 1973 .

[79]  L. Rayleigh On the Capillary Phenomena of Jets , 1879 .