Detection and identification of bacteria intimately associated with fungi of the order Sebacinales

Because of their beneficial impact on plants, the highly diverse mycorrhizal fungi grouped in the order Sebacinales lay claim to high ecological and agricultural significance. Here, we describe for the first time associations of Sebacinoid members with bacteria. Using quantitative PCR, denaturating gradient gel electrophoresis and fluorescence in situ hybridization, we detected an intimate association between Piriformospora indica and Rhizobium radiobacter, an α‐Proteobacterium. The stability of the association, vertical transmission of the bacteria during asexual fungal reproduction and fungal plant colonization was monitored using R. radiobacter‐specific primers. Treatment of mycelium or fungal protoplasts with antibiotics highly efficient against the free bacteria failed to cure the fungus. Barley seedlings dip‐inoculated with R. radiobacter showed growth promotion and systemic resistance to the powdery mildew fungus Blumeria graminis comparable to P. indica inoculation. By screening additional isolates of the Sebacina vermifera complex, three species‐specific associations with bacteria from the genera Paenibacillus, Acinetobacter and Rhodococcus were found. These findings suggest that Sebacinales species regularly undergo complex interactions involving host plants and bacteria reminiscent of other ectomycorrhizal and endomycorrhizal associations.

[1]  J. Leveau,et al.  Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. , 2008, The New phytologist.

[2]  I. Feussner,et al.  Piriformospora indica affects plant growth by auxin production. , 2007, Physiologia plantarum.

[3]  S. Deshmukh,et al.  Piriformospora indica protects barley from root rot caused by Fusarium graminearum , 2007 .

[4]  J. Chun,et al.  EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. , 2007, International journal of systematic and evolutionary microbiology.

[5]  P. Frey-Klett,et al.  The mycorrhiza helper bacteria revisited. , 2007, The New phytologist.

[6]  Jonathan D. G. Jones,et al.  Pathological hormone imbalances. , 2007, Current opinion in plant biology.

[7]  G. Bécard,et al.  Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria , 2007, Cellular microbiology.

[8]  F. Richard,et al.  Sebacinales are common mycorrhizal associates of Ericaceae. , 2007, The New phytologist.

[9]  B. Han,et al.  Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). , 2007, Gene.

[10]  K. Greulich,et al.  Endosymbiont-Dependent Host Reproduction Maintains Bacterial-Fungal Mutualism , 2007, Current Biology.

[11]  Andrew W. Wilson,et al.  Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). , 2007, Molecular phylogenetics and evolution.

[12]  V. Reis,et al.  Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia , 2007, Antonie van Leeuwenhoek.

[13]  E. Tsavkelova,et al.  Bacteria associated with orchid roots and microbial production of auxin. , 2007, Microbiological research.

[14]  M. Weiß,et al.  The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley , 2006, Proceedings of the National Academy of Sciences.

[15]  Michael Wagner,et al.  probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007 , 2006, Nucleic Acids Res..

[16]  Julie E. Jones,et al.  Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation , 2006, Mycorrhiza.

[17]  M. Tarkka,et al.  Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505 , 2006, Applied and Environmental Microbiology.

[18]  Jonathan D. G. Jones,et al.  A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling , 2006, Science.

[19]  Stefano Ghignone,et al.  Endobacteria or bacterial endosymbionts? To be or not to be. , 2006, The New phytologist.

[20]  J. Friml,et al.  Auxin signaling , 2006, Journal of Cell Science.

[21]  M. Aarts,et al.  Comparative transcriptomics -- model species lead the way. , 2006, The New phytologist.

[22]  G. Hause,et al.  Conventional kinesin mediates microtubule-microtubule interactions in vivo. , 2005, Molecular biology of the cell.

[23]  R. Rivas,et al.  The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. , 2005, Molecular plant-microbe interactions : MPMI.

[24]  A. Hartmann,et al.  Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. , 2005, Environmental microbiology.

[25]  P. Frey-Klett,et al.  Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. , 2005, The New phytologist.

[26]  K. Becker,et al.  The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. Fahey,et al.  Molecular monitoring and characterization of the faecal microbiota of healthy dogs during fructan supplementation. , 2005, FEMS microbiology letters.

[28]  A. Varma,et al.  Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane , 2004 .

[29]  C. Sorlini,et al.  Comparison of Different Primer Sets for Use in Automated Ribosomal Intergenic Spacer Analysis of Complex Bacterial Communities , 2004, Applied and Environmental Microbiology.

[30]  A. Urban,et al.  Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. , 2004, Mycological research.

[31]  G. Bécard,et al.  Vertical Transmission of Endobacteria in the Arbuscular Mycorrhizal Fungus Gigaspora margarita through Generation of Vegetative Spores , 2004, Applied and Environmental Microbiology.

[32]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[33]  G. Fink,et al.  The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Hartmann,et al.  In Situ Identification of Intracellular Bacteria Related to Paenibacillus spp. in the Mycelium of the Ectomycorrhizal Fungus Laccaria bicolor S238N , 2003, Applied and Environmental Microbiology.

[35]  R. Duponnois,et al.  A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species , 2003, Mycorrhiza.

[36]  S. Bedini,et al.  Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps. , 2000, Canadian journal of microbiology.

[37]  K. Schleifer,et al.  The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. , 1999, Systematic and applied microbiology.

[38]  Sudha,et al.  Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte , 1999, Applied and Environmental Microbiology.

[39]  H Meier,et al.  Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. , 1999, Systematic and applied microbiology.

[40]  Rudolf Amann,et al.  rRNA based identification and detection systems for rhizobia and other bacteria , 1998, Plant and Soil.

[41]  A. Varma,et al.  PIRIFORMOSPORA INDICA, GEN. ET SP. NOV., A NEW ROOT-COLONIZING FUNGUS , 1998 .

[42]  Sally E Smith and David J Read Mycorrhizal Symbiosis 2nd ed , 1997 .

[43]  E. Nurmiaho-Lassila,et al.  Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study , 1997 .

[44]  J. Germida,et al.  Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4 , 1997, Biology and Fertility of Soils.

[45]  R. Kroppenstedt,et al.  Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa , 1996 .

[46]  R Amann,et al.  Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. , 1996, Microbiology.

[47]  S. Perotto,et al.  Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria , 1996, Protoplasma.

[48]  L. Moore,et al.  Universal PCR primers for detection of phytopathogenic Agrobacterium strains , 1995, Applied and environmental microbiology.

[49]  Y. Dessaux,et al.  A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria , 1995, Applied and environmental microbiology.

[50]  J. Garbaye Tansley Review No. 76 Helper bacteria: a new dimension to the mycorrhizal symbiosis. , 1994, The New phytologist.

[51]  P. Kämpfer,et al.  Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria , 1991, Microbial Ecology.

[52]  R. Amann,et al.  Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , 1990, Applied and environmental microbiology.

[53]  P. Rainey,et al.  A model system for examining involvement of bacteria in basidiome initiation of Agaricus bisporus , 1990 .

[54]  J. Warcup Mycorrhizal associations of isolates of Sebacina vermifera , 1988 .

[55]  H. Noller,et al.  Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. , 1981, Journal of molecular biology.

[56]  A. Saxena,et al.  Axenic Culture of Symbiotic Fungus Piriformospora indica , 2008 .

[57]  J. Jansson,et al.  Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. , 2006, Environmental microbiology.

[58]  E. Martínez-Romero,et al.  Rhizobium Frank 1889, 338AL , 2005 .

[59]  F. Angelis,et al.  Supporting information for , 2004 .

[60]  Michael Wagner,et al.  probeBase: an online resource for rRNA-targeted oligonucleotide probes , 2003, Nucleic Acids Res..