Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature?

In this study we focus on the sea level trend pattern observed by satellite altimetry in the tropical Pacific over the 1993–2009 time span (i.e. 17 yr). Our objective is to investigate whether this 17-yr-long trend pattern was different before the altimetry era, what was its spatio-temporal variability and what have been its main drivers. We try to discriminate the respective roles of the internal variability of the climate system and of external forcing factors, in particular anthropogenic emissions (greenhouse gases and aerosols). On the basis of a 2-D past sea level reconstruction over 1950–2009 (based on a combination of observations and ocean modelling) and multi-century control runs (i.e. with constant, preindustrial external forcing) from eight coupled climate models, we have investigated how the observed 17-yr sea level trend pattern evolved during the last decades and centuries, and try to estimate the characteristic time scales of its variability. For that purpose, we have computed sea level trend patterns over successive 17-yr windows (i.e. the length of the altimetry record), both for the 60-yr long reconstructed sea level and the model runs. We find that the 2-D sea level reconstruction shows spatial trend patterns similar to the one observed during the altimetry era. The pattern appears to have fluctuated with time with a characteristic time scale of the order of 25–30 yr. The same behaviour is found in multi-centennial control runs of the coupled climate models. A similar analysis is performed with 20th century coupled climate model runs with complete external forcing (i.e. solar plus volcanic variability and changes in anthropogenic forcing). Results suggest that in the tropical Pacific, sea level trend fluctuations are dominated by the internal variability of the ocean–atmosphere coupled system. While our analysis cannot rule out any influence of anthropogenic forcing, it concludes that the latter effect in that particular region is stillhardly detectable.

[1]  D. Vimont The Contribution of the Interannual ENSO Cycle to the Spatial Pattern of Decadal ENSO-Like Variability* , 2005 .

[2]  M. Lozier,et al.  Opposing decadal changes for the North Atlantic meridional overturning circulation , 2010 .

[3]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[4]  C. Wunsch,et al.  Decadal Trends in Sea Level Patterns : 1993-2004 , 2007 .

[5]  R. Greatbatch A note on the representation of steric sea level in models that conserve volume rather than mass , 1994 .

[6]  A. Timmermann,et al.  Wind Effects on Past and Future Regional Sea Level Trends in the Southern Indo-Pacific* , 2010 .

[7]  R. Preisendorfer,et al.  Principal Component Analysis in Meteorology and Oceanography , 1988 .

[8]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[9]  Chris W. Hughes,et al.  Identifying the causes of sea-level change , 2009 .

[10]  Thierry Penduff,et al.  Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales , 2010 .

[11]  W. Landman Climate change 2007: the physical science basis , 2010 .

[12]  A. Cazenave,et al.  Sea level variations at tropical Pacific islands since 1950 , 2012 .

[13]  Timothy P. Boyer,et al.  Warming of the world ocean, 1955–2003 , 2005 .

[14]  A. Lombard,et al.  Regional patterns of observed sea level change: insights from a 1/4° global ocean/sea-ice hindcast , 2009 .

[15]  David Rind,et al.  A coupled atmosphere‐ocean model for transient climate change studies , 1995 .

[16]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[17]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[18]  J. Cooley,et al.  The Fast Fourier Transform , 1975 .

[19]  Gary T. Mitchum,et al.  Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions , 2010 .

[20]  A. Cazenave,et al.  Contribution of thermal expansion to present-day sea-level change revisited , 2005 .

[21]  Semyon A. Grodsky,et al.  Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis , 2005 .

[22]  Stephen G. Yeager,et al.  Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies , 2004 .

[23]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[24]  M. Cane,et al.  Reduced Space Optimal Interpolation of Historical Marine Sea Level Pressure: 1854–1992* , 2000 .

[25]  T. Zhou,et al.  Fundamental framework and experiments of the third generation of IAP / LASG world ocean general circulation model , 1999 .

[26]  Anny Cazenave,et al.  Contemporary sea level rise. , 2010, Annual review of marine science.

[27]  D. Volkov,et al.  Improving the quality of satellite altimetry data over continental shelves , 2007 .

[28]  G. Meehl,et al.  Patterns of Indian Ocean sea-level change in a warming climate , 2010 .

[29]  A. Cazenave,et al.  Two-dimensional reconstruction of past sea level (1950–2003) from tide gauge data and an Ocean General Circulation Model , 2009 .

[30]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[31]  Z. Xuehong,et al.  An eddy-permitting oceanic general circulation model and its preliminary evaluation , 2004 .

[32]  A. Cazenave,et al.  Thermosteric sea level rise for the past 50 years; comparison with tide gauges and inference on water mass contribution , 2005 .

[33]  J. Carton,et al.  A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA) , 2008 .

[34]  Anny Cazenave,et al.  An Assessment of Two-Dimensional Past Sea Level Reconstructions Over 1950–2009 Based on Tide-Gauge Data and Different Input Sea Level Grids , 2012, Surveys in Geophysics.

[35]  M. Tamisiea,et al.  Recent mass balance of polar ice sheets inferred from patterns of global sea-level change , 2001, Nature.

[36]  P. L. Traon,et al.  AN IMPROVED MAPPING METHOD OF MULTISATELLITE ALTIMETER DATA , 1998 .

[37]  J. Mitrovica,et al.  Searching for eustasy in deglacial sea-level histories , 2007 .

[38]  B. Anderson,et al.  Central Pacific El Niño and decadal climate change in the North Pacific Ocean , 2010 .

[39]  Anny Cazenave,et al.  Present‐day sea level change: Observations and causes , 2004 .

[40]  M. Kimoto,et al.  Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections , 2009 .

[41]  D. Vimont,et al.  Pacific Interannual and Interdecadal Equatorial Variability in a 1000-Yr Simulation of the CSIRO Coupled General Circulation Model* , 2002 .

[42]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[43]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[44]  Willem A. Landman,et al.  Climate change 2007 : the physical science basis, S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H. LeRoy Miller, Jr. and Z. Chen (Eds.) : book review , 2010 .

[45]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[46]  Françoise Ogor,et al.  ERS‐1/2 orbit improvement using TOPEX/POSEIDON: The 2 cm challenge , 1998 .

[47]  Hui Wan,et al.  Design of a new dynamical core for global atmospheric models based on some efficient numerical methods , 2004 .

[48]  P. Clark,et al.  A new projection of sea level change in response to collapse of marine sectors of the Antarctic Ice Sheet , 2010 .

[49]  K. Lau,et al.  Interannual, Decadal–Interdecadal, and Global Warming Signals in Sea Surface Temperature during 1955–97 , 1999 .

[50]  Vincent Toumazou,et al.  Using a Lanczos Eigensolver in the Computation of Empirical Orthogonal Functions , 2001 .

[51]  Kimio Hanawa,et al.  Observations: Oceanic Climate Change and Sea Level , 2007 .

[52]  D. Stammer,et al.  Decadal Sea Level Changes in the 50-Year GECCO Ocean Synthesis , 2008 .

[53]  S. Manabe,et al.  Model assessment of decadal variability and trends in the tropical Pacific Ocean , 1998 .

[54]  V. Pope,et al.  The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 , 2000 .

[55]  Thierry Penduff,et al.  An ERA40-based atmospheric forcing for global ocean circulation models , 2010 .

[56]  Balaji Rajagopalan,et al.  Analyses of global sea surface temperature 1856–1991 , 1998 .

[57]  K. Lambeck,et al.  Estimates of the Regional Distribution of Sea Level Rise over the 1950–2000 Period , 2004 .

[58]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[59]  B. Samuels,et al.  GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation , 2006 .

[60]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[61]  Michel Crucifix,et al.  The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations , 2006 .

[62]  Peter U. Clark,et al.  The Sea-Level Fingerprint of West Antarctic Collapse , 2009, Science.

[63]  T. Schmith,et al.  A Surrogate Ensemble Study of Sea Level Reconstructions , 2009 .

[64]  A. Cazenave,et al.  A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008 , 2009 .