Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging

The field of molecular imaging has recently seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing researchers to monitor not only anatomical changes, but physiological and molecular changes as well. Applications have ranged from detecting inflammatory diseases via the accumulation of non-targeted SPIO in infiltrating macrophages to the specific identification of cell surface markers expressed on tumors. In this article, we attempt to illustrate the broad utility of SPIO in molecular imaging, including some of the recent developments, such as the transformation of SPIO into an activatable probe termed the magnetic relaxation switch.

[1]  L. Juillerat-Jeanneret,et al.  Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. , 2005, Biomaterials.

[2]  T. Nishimura,et al.  Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma , 2005, British Journal of Cancer.

[3]  Rika Takikawa,et al.  [In-vivo visualization of gene expression using magnetic resonance imaging]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[4]  Yoshimi Anzai,et al.  MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent , 1997, Journal of magnetic resonance imaging : JMRI.

[5]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[6]  R. Weissleder,et al.  Receptor imaging: application to MR imaging of liver cancer. , 1990, Radiology.

[7]  J A Frank,et al.  Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. London The molecular formula and proposed structure of the iron-dextran complex, imferon. , 2004, Journal of pharmaceutical sciences.

[9]  Superparamagnetic Iron Oxide Nanoparticles: Nodal Metastases and Beyond , 2004, Topics in magnetic resonance imaging : TMRI.

[10]  J. Mulliken,et al.  E-selectin is present in proliferating endothelial cells in human hemangiomas. , 1996, The American journal of pathology.

[11]  T. Belin,et al.  Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters , 2002 .

[12]  Jan Grimm,et al.  Novel Nanosensors for Rapid Analysis of Telomerase Activity , 2004, Cancer Research.

[13]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[14]  R. Béliveau,et al.  Expression of matrix metalloproteinases and their inhibitors in human brain tumors , 2004, Clinical & Experimental Metastasis.

[15]  C. Marx,et al.  Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. , 2000, Radiology.

[16]  J. Debatin,et al.  Ultrasmall superparamagnetic iron oxide-enhanced MR imaging of atherosclerotic plaque in hyperlipidemic rabbits. , 2002, Academic radiology.

[17]  Dmitri Artemov,et al.  MR molecular imaging of the Her‐2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles , 2003, Magnetic resonance in medicine.

[18]  M. Prince,et al.  Iron oxide‐enhanced MR lymphography: The evaluation of cervical lymph node metastases in head and neck cancer , 1997, Journal of magnetic resonance imaging : JMRI.

[19]  K. Suslick,et al.  Sonochemical Synthesis of Iron Colloids , 1996 .

[20]  A. ela,et al.  Preparation of magnetic polymeric particles via inverse microemulsion polymerization process , 2002 .

[21]  Alan P Koretsky,et al.  MRI detection of single particles for cellular imaging. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Ralph Weissleder,et al.  Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. , 2003, Journal of the American Chemical Society.

[23]  W. Pegios,et al.  Superparamagnetic iron oxide--enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liver lesions. , 1996, Radiology.

[24]  W. Heindel,et al.  Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. , 2005, Radiology.

[25]  A. Curtis,et al.  Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture , 2004, Journal of materials science. Materials in medicine.

[26]  H. Karasuyama,et al.  Exposure of phosphatidylethanolamine on the surface of apoptotic cells. , 1997, Experimental cell research.

[27]  W. Tan,et al.  Biochemically functionalized silica nanoparticles. , 2001, The Analyst.

[28]  Bruno Brochet,et al.  Macrophage Imaging in Central Nervous System and in Carotid Atherosclerotic Plaque Using Ultrasmall Superparamagnetic Iron Oxide in Magnetic Resonance Imaging , 2004, Investigative radiology.

[29]  Ralph Weissleder,et al.  Peroxidase Substrate Nanosensors for MR Imaging , 2004 .

[30]  Alan P Koretsky,et al.  Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. , 2003, Blood.

[31]  E J Topol,et al.  Association between myeloperoxidase levels and risk of coronary artery disease. , 2001, JAMA.

[32]  Helmuth Möhwald,et al.  Magnetic Core–Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres , 1999 .

[33]  G. Chow,et al.  Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications , 2004 .

[34]  Robert R Edelman,et al.  Contrast-enhanced MR imaging of the heart: overview of the literature. , 2004, Radiology.

[35]  R. Weissleder,et al.  Pancreatic receptors: initial feasibility studies with a targeted contrast agent for MR imaging. , 1994, Radiology.

[36]  F. Caruso,et al.  Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach , 2001 .

[37]  E Ruoslahti,et al.  RGD and other recognition sequences for integrins. , 1996, Annual review of cell and developmental biology.

[38]  C. Hoeller,et al.  MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. , 2004, Magnetic resonance imaging.

[39]  Ralph Weissleder,et al.  A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. , 2003, Molecular imaging.

[40]  J. Benoit,et al.  Development and characterization of solid lipid nanoparticles loaded with magnetite. , 2002, International journal of pharmaceutics.

[41]  Harvey R Herschman,et al.  Molecular Imaging: Looking at Problems, Seeing Solutions , 2003, Science.

[42]  J. Jolivet,et al.  Metal Oxide Chemistry and Synthesis: From Solution to Solid State , 2000 .

[43]  Anna Moore,et al.  In Vivo Targeting of Underglycosylated MUC-1 Tumor Antigen Using a Multimodal Imaging Probe , 2004, Cancer Research.

[44]  Z. Wu,et al.  Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications , 2005 .

[45]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[46]  R. Brooks,et al.  T2‐shortening by strongly magnetized spheres: A chemical exchange model † , 2002, Magnetic resonance in medicine.

[47]  A. Gupta,et al.  Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies , 2004, IEEE Transactions on NanoBioscience.

[48]  S. Elliott,et al.  The Physics and Chemistry of Solids , 1956, Nature.

[49]  Nicolas Grenier,et al.  In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. , 2004, Radiology.

[50]  R. Brooks,et al.  On T2‐shortening by strongly magnetized spheres: A partial refocusing model , 2002, Magnetic resonance in medicine.

[51]  C. Serna,et al.  Preparation of homogeneous mixed oxides by spray pyrolysis , 1991 .

[52]  Heather Kalish,et al.  Comparison of Transfection Agents in Forming Complexes with Ferumoxides, Cell Labeling Efficiency, and Cellular Viability , 2004, Molecular imaging.

[53]  C Zimmer,et al.  MR imaging of phagocytosis in experimental gliomas. , 1995, Radiology.

[54]  A. P. Alivisatos,et al.  A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides , 1999 .

[55]  E. E. Carpenter,et al.  Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles , 1998 .

[56]  S A Wickline,et al.  Novel MRI Contrast Agent for Molecular Imaging of Fibrin: Implications for Detecting Vulnerable Plaques , 2001, Circulation.

[57]  V. Cabuil,et al.  Preparation and properties of monodisperse magnetic fluids , 1995 .

[58]  R Weissleder,et al.  Improved delineation of human brain tumors on MR images using a long‐circulating, superparamagnetic iron oxide agent , 1999, Journal of magnetic resonance imaging : JMRI.

[59]  A. Gupta Iron infusion into the arterial blood line during haemodialysis: a novel method to remove free iron and reduce oxidative damage. , 2000, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[60]  B Quesson,et al.  In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance , 1999, Magnetic resonance in medicine.

[61]  Mingyuan Gao,et al.  One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals , 2004 .

[62]  P. Reimer,et al.  Non-invasive vascular imaging of peripheral vessels , 1998, European Radiology.

[63]  R Weissleder,et al.  Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging. , 1988, Radiology.

[64]  W Semmler,et al.  Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in Vivo by using transferrin receptor pathways , 1998, Magnetic resonance in medicine.

[65]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[66]  Ralph Weissleder,et al.  Long-circulating iron oxides for MR imaging , 1995 .

[67]  Alexander Petrovsky,et al.  Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. , 2002, Bioconjugate chemistry.

[68]  Roland Pease,et al.  Magnetic materials , 2018, Nature.

[69]  A. Bjørnerud,et al.  A targeted contrast agent for magnetic resonance imaging of thrombus: Implications of spatial resolution , 2001, Journal of magnetic resonance imaging : JMRI.

[70]  Gang Bao,et al.  Magnetic nanoparticle probes , 2005 .

[71]  T J Brady,et al.  Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. , 1992, Radiology.

[72]  5492814 Monocrystalline iron oxide particles for studying biological tissues , 1996 .

[73]  M. Muhammed,et al.  Biomedical application of ferrofluids containing magnetite nanoparticles , 2001 .

[74]  A. Tanimoto,et al.  Relaxation effects of clustered particles , 2001, Journal of magnetic resonance imaging : JMRI.

[75]  J. Nissim Intravenous Iron , 1954, Nutrition reviews.

[76]  K. Klabunde,et al.  Nanoscale materials in chemistry , 2001 .

[77]  F. Jamar,et al.  Use of a radiolabeled monoclonal antibody against E-selectin for imaging of endothelial activation in rheumatoid arthritis. , 1996, Arthritis and rheumatism.

[78]  Ming Zhao,et al.  Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent , 2001, Nature Medicine.

[79]  Rong Zhou,et al.  Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. , 2004, Academic radiology.

[80]  Michael E. Phelps,et al.  PET: A biological imaging technique , 1991, Neurochemical Research.

[81]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[82]  M. E. Kooi,et al.  Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging , 2003, Circulation.

[83]  P. Ayyub,et al.  Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors , 1995 .

[84]  C. Higgins,et al.  Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities , 1998, European Radiology.

[85]  B. Maldague,et al.  Ferumoxides‐enhanced quantitative magnetic resonance imaging of the normal and abnormal bone marrow: Preliminary assessment , 1999, Journal of magnetic resonance imaging : JMRI.

[86]  G. Kreutzberg,et al.  Cytotoxicity of microglia , 1992, Journal of Neuroimmunology.

[87]  Ulrich Heinzmann,et al.  Targeting of hematopoietic progenitor cells with MR contrast agents. , 2003, Radiology.

[88]  Ralph Weissleder,et al.  Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle , 2005, Circulation research.

[89]  Yoshimi Anzai,et al.  Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. , 2003, Radiology.

[90]  C. Passirani,et al.  Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). , 1998, Pharmaceutical research.

[91]  Ralph Weissleder,et al.  Annexin V–CLIO: A Nanoparticle for Detecting Apoptosis by MRI , 2002, Molecular imaging.

[92]  R. Molday,et al.  Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. , 1982, Journal of immunological methods.

[93]  Internalization of Nanoparticles in the Middle Ear Epithelium in Response to an External Magnetic Field: Generating a Force , 2004 .

[94]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[95]  D E Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton. , 1993, Science.

[96]  P. Prasad,et al.  Aqueous Ferrofluid of Citric Acid Coated Magnetite Particles , 2003 .

[97]  R. J. Lee,et al.  Targeted drug delivery via the folate receptor. , 2000, Advanced drug delivery reviews.

[98]  T. Ichikawa,et al.  Ferumoxides-enhanced double-echo T2-weighted MR imaging in differentiating metastases from nonsolid benign lesions of the liver. , 2002, Radiology.

[99]  Ralph Weissleder,et al.  Magnetic sensors for protease assays. , 2003, Angewandte Chemie.

[100]  Ralph Weissleder,et al.  Magneto/optical annexin V, a multimodal protein. , 2004, Bioconjugate chemistry.

[101]  J. Schotter,et al.  Magnetic particles as markers and carriers of biomolecules. , 2005, IEE proceedings. Nanobiotechnology.

[102]  J. Weisel,et al.  Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. , 2002, Blood.

[103]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[104]  Babeş,et al.  Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. , 1999, Journal of colloid and interface science.

[105]  Sabino Veintemillas-Verdaguer,et al.  Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles , 1999 .

[106]  R Weissleder,et al.  First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. , 1990, Radiology.

[107]  R. Weissleder,et al.  MRI of transgene expression: correlation to therapeutic gene expression. , 2002, Neoplasia.

[108]  Donald S. Williams,et al.  Detection of single mammalian cells by high-resolution magnetic resonance imaging. , 1999, Biophysical journal.

[109]  Shelton D Caruthers,et al.  Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI , 2004, Magnetic resonance in medicine.

[110]  R Weissleder,et al.  Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties , 1993, Magnetic resonance in medicine.

[111]  Effect of the oxidation conditions on the maghemites produced by laser pyrolysis , 2001 .

[112]  Andreas Saleh,et al.  In vivo MRI of brain in ̄ ammation in human ischaemic stroke , 2004 .

[113]  I. Romslo,et al.  The transferrin receptor: its diagnostic value and its potential as therapeutic target. , 1993, Scandinavian journal of clinical and laboratory investigation. Supplementum.

[114]  A. Antony,et al.  Folate receptors. , 1996, Annual review of nutrition.

[115]  J. Bischoff,et al.  E‐Selectin Is Upregulated in Proliferating Endothelial Cells In Vitro , 1997, Microcirculation.

[116]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[117]  R. Nelson,et al.  Superparamagnetic iron oxide particles (SH U 555 A): evaluation of efficacy in three doses for hepatic MR imaging. , 1998, Radiology.

[118]  Dmitri Artemov,et al.  Magnetic resonance molecular imaging of the HER-2/neu receptor. , 2003, Cancer research.

[119]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[120]  R Weissleder,et al.  Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. , 2000, Radiology.

[121]  R. Weissleder,et al.  In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. , 2005, Bioconjugate chemistry.

[122]  R. Massart,et al.  Preparation of aqueous magnetic liquids in alkaline and acidic media , 1981 .

[123]  Splenic lymphoma: ferrite-enhanced MR imaging in rats. , 1988, Radiology.

[124]  Sung-chul Shin,et al.  Nanoparticles of Magnetic Ferric Oxides Encapsulated with Poly(D,L Laticde-Co Glycolide) and Their Applications to Magnetic Resonance Imaging Contrast Agent. , 2004 .

[125]  M. Pileni,et al.  Magnetic properties of mixed cobalt–zinc ferrite nanoparticles , 2000 .

[126]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[127]  M. Pileni The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals , 2003, Nature materials.

[128]  Ralph Weissleder,et al.  DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. , 2002, Journal of the American Chemical Society.

[129]  Scott E. Fraser,et al.  In vivo visualization of gene expression using magnetic resonance imaging , 2000, Nature Biotechnology.

[130]  Sophie Neveu,et al.  Synthesis of very fine maghemite particles , 1995 .

[131]  Brian K Rutt,et al.  Imaging single mammalian cells with a 1.5 T clinical MRI scanner , 2003, Magnetic resonance in medicine.

[132]  Isabelle Raynal,et al.  Macrophage Endocytosis of Superparamagnetic Iron Oxide Nanoparticles: Mechanisms and Comparison of Ferumoxides and Ferumoxtran-10 , 2004, Investigative radiology.

[133]  Ralph Weissleder,et al.  Seeing Within: Molecular Imaging of the Cardiovascular System , 2004, Circulation research.

[134]  Ralph Weissleder,et al.  Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. , 2001, Angewandte Chemie.

[135]  Bartley P. Griffith,et al.  Macrophage Accumulation Associated With Rat Cardiac Allograft Rejection Detected by Magnetic Resonance Imaging With Ultrasmall Superparamagnetic Iron Oxide Particles , 2001, Circulation.

[136]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. , 1990, Radiology.

[137]  Hongzhe Sun,et al.  Targeted Drug Delivery via the Transferrin Receptor-Mediated Endocytosis Pathway , 2002, Pharmacological Reviews.

[138]  R Weissleder,et al.  Improvement of MRI probes to allow efficient detection of gene expression. , 2000, Bioconjugate chemistry.

[139]  A. Bée,et al.  Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles , 1999 .

[140]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.

[141]  Xiaoping P. Hu,et al.  Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent , 2004, JBIC Journal of Biological Inorganic Chemistry.

[142]  R Weissleder,et al.  Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. , 2001, Journal of immunological methods.

[143]  B Hamm,et al.  Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles , 2001, Journal of magnetic resonance imaging : JMRI.

[144]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[145]  R Weissleder,et al.  Measuring transferrin receptor gene expression by NMR imaging. , 1998, Biochimica et biophysica acta.

[146]  R. Müller,et al.  A Novel Formulation for Superparamagnetic Iron Oxide (SPIO) Particles Enhancing MR Lymphography: Comparison of Physicochemical Properties and The In Vivo Behaviour , 2002, Journal of drug targeting.

[147]  V. Palkar,et al.  Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3 , 1988 .

[148]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[149]  J. Ugelstad,et al.  Magnetic separation techniques: their application to medicine , 1985, Molecular and Cellular Biochemistry.

[150]  Ralph Weissleder,et al.  Magnetic relaxation switch immunosensors detect enantiomeric impurities. , 2004, Angewandte Chemie.

[151]  K. Eichler,et al.  Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. , 2002, Radiology.

[152]  D. Navajas,et al.  Scaling the microrheology of living cells. , 2001, Physical review letters.

[153]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[154]  U. Schwertmann,et al.  Iron Oxides in the Laboratory: Preparation and Characterization , 1991 .

[155]  Jeff W M Bulte,et al.  Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. , 2003, Radiology.

[156]  Bernd Hamm,et al.  Monomer-Coated Very Small Superparamagnetic Iron Oxide Particles as Contrast Medium for Magnetic Resonance Imaging: Preclinical In Vivo Characterization , 2002, Investigative radiology.

[157]  M. Pileni,et al.  Reverse micelles as microreactors , 1993 .