The initial boundary value problem and quasi-local Hamiltonians in general relativity

We discuss relations between the initial boundary value problem (IBVP) and quasi-local Hamiltonians in GR. The latter have traditionally been based on Dirichlet boundary conditions, which however are shown here to be ill-posed for the IBVP. We present and analyze several other choices of boundary conditions which are better behaved with respect to the IBVP and carry out a corresponding Hamiltonian analysis, using the framework of the covariant phase space method.

[1]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[2]  A Quasilocal Hamiltonian for Gravity with Classical and Quantum Applications , 2000, gr-qc/0008030.

[3]  R. Wald,et al.  Local symmetries and constraints , 1990 .

[4]  Grigorios Fournodavlos,et al.  The Initial Boundary Value Problem for the Einstein Equations with Totally Geodesic Timelike Boundary , 2020, Communications in Mathematical Physics.

[5]  Brown,et al.  Quasilocal energy and conserved charges derived from the gravitational action. , 1992, Physical review. D, Particles and fields.

[6]  David Maxwell The conformal method and the conformal thin-sandwich method are the same , 2014, 1402.5585.

[7]  Bartnik New definition of quasilocal mass. , 1989, Physical review letters.

[8]  Covariant phase space, constraints, gauge and the Peierls formula , 2014, 1402.1282.

[9]  D. Harlow,et al.  Covariant phase space with boundaries , 2019, Journal of High Energy Physics.

[10]  Iyer,et al.  Comparison of the Noether charge and Euclidean methods for computing the entropy of stationary black holes. , 1995, Physical review. D, Particles and fields.

[11]  A. Marini Dirichlet and neumann boundary value problems for Yang-Mills connections , 1992 .

[12]  Quasilocal Hamiltonians in general relativity , 2010, 1008.4309.

[13]  O. Sarbach,et al.  Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations , 2012, Living Reviews in Relativity.

[14]  S. Yau,et al.  Isometric Embeddings into the Minkowski Space and New Quasi-Local Mass , 2008, 0805.1370.

[15]  J. Marsden,et al.  The initial value problem and the dynamical formulation of general relativity , 1979 .

[16]  Christos Mantoulidis,et al.  Total Mean Curvature, Scalar Curvature, and a Variational Analog of Brown–York Mass , 2016, 1604.00927.

[17]  Jacques Smulevici,et al.  On the initial boundary value problem for the Einstein vacuum equations in the maximal gauge , 2019, 1912.07338.

[18]  R. Geroch,et al.  Global aspects of the Cauchy problem in general relativity , 1969 .

[19]  Michael T. Anderson Boundary value problems for Einstein metrics, I , 2006, math/0612647.

[20]  E. Witten,et al.  Covariant description of canonical formalism in geometrical theories , 1986 .

[21]  H. Friedrich,et al.  The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .

[22]  Panagiotis Gianniotis The Ricci flow on manifolds with boundary , 2012, 1210.0813.

[23]  Edward Witten A note on boundary conditions in Euclidean gravity , 2021, Reviews in Mathematical Physics.

[24]  Iyer,et al.  Some properties of the Noether charge and a proposal for dynamical black hole entropy. , 1994, Physical review. D, Particles and fields.

[25]  Yuguang Shi,et al.  On Geometric Problems Related to Brown-York and Liu-Yau Quasilocal Mass , 2009, 0906.5451.

[26]  J. York Covariant decompositions of symmetric tensors in the theory of gravitation , 1974 .

[27]  Oscar A. Reula,et al.  Boundary Conditions for Coupled Quasilinear Wave Equations with Application to Isolated Systems , 2008, 0807.3207.

[28]  E. Witten A Note on Boundary Conditions in Euclidean Gravity , 2018, Roman Jackiw.

[29]  D. Raine General relativity , 1980, Nature.

[30]  Canonical phase space formulation of quasi-local general relativity , 2003, gr-qc/0301123.

[31]  R. Wald,et al.  General definition of “conserved quantities” in general relativity and other theories of gravity , 1999, gr-qc/9911095.

[32]  Oscar A. Reula,et al.  Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates , 2007, Classical and Quantum Gravity.

[33]  J. Sniatycki,et al.  The existence and uniqueness of solutions of Yang-Mills equations with bag boundary conditions , 1994 .

[34]  Michael T. Anderson Conformal immersions of prescribed mean curvature in R^3 , 2012, 1204.5225.

[35]  Positive Mass Theorem and the Boundary Behaviors of Compact Manifolds with Nonnegative Scalar Curvature , 2002, math/0301047.

[36]  D. Marolf,et al.  On the stability of gravity with Dirichlet walls , 2015, 1504.07580.

[37]  D. Marolf,et al.  Setting the boundary free in AdS/CFT , 2008, 0805.1902.

[38]  L. Szabados Quasi-Local Energy-Momentum and Angular Momentum in General Relativity , 2009, Living reviews in relativity.

[39]  H. Kreiss,et al.  Geometric boundary data for the gravitational field , 2013, 1302.0800.

[40]  Y. Fourès-Bruhat,et al.  Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .

[41]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .