Dielectric analysis of Sclerotinia sclerotiorum airborne inoculum by the measurement of dielectrophoretic trapping voltages using a microfluidic platform

[1]  Jingwei,et al.  Highly Efficient Capture and Quantification of the Airborne Fungal Pathogen Sclerotinia sclerotiorum Employing a Nanoelectrode-Activated Microwell Array , 2021, ACS omega.

[2]  Pedro A. Duarte,et al.  Selective Single-Cell Sorting Using a Multisectorial Electroactive Nanowell Platform. , 2021, ACS nano.

[3]  Eva M. Schmelz,et al.  A novel ultralow conductivity electromanipulation buffer improves cell viability and enhances dielectrophoretic consistency , 2021, Electrophoresis.

[4]  J. Raskin,et al.  Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water † , 2021, Biosensors.

[5]  Gaser N. Abdelrasoul,et al.  Single ascospore detection for the forecasting of Sclerotinia stem rot of canola. , 2020, Lab on a chip.

[6]  Y. Gong,et al.  Complex Permittivity Measurement of High-Loss Biological Material with Improved Cavity Perturbation Method in the Range of 26.5–40 GHz , 2020 .

[7]  M. Reed,et al.  Continuous Label-Free Electronic Discrimination of T Cells by Activation State. , 2020, ACS nano.

[8]  Yuechao Wang,et al.  Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances , 2020, Micromachines.

[9]  Xin Li,et al.  The Notorious Soilborne Pathogenic Fungus Sclerotinia sclerotiorum: An Update on Genes Studied with Mutant Analysis , 2019, Pathogens.

[10]  Ali Beskok,et al.  Quantification of Cell Death Using an Impedance-Based Microfluidic Device. , 2019, Analytical chemistry.

[11]  Gaser N. Abdelrasoul,et al.  Immuno-impedimetric Biosensor for Onsite Monitoring of Ascospores and Forecasting of Sclerotinia Stem Rot of Canola , 2018, Scientific Reports.

[12]  Vahé Nerguizian,et al.  Characterization of several cancer cell lines at microwave frequencies , 2017 .

[13]  R. Eichhorn,et al.  DNA dielectrophoresis: Theory and applications a review , 2017, Electrophoresis.

[14]  A. Beskok,et al.  Dielectrophoresis assisted loading and unloading of microwells for impedance spectroscopy , 2017, Electrophoresis.

[15]  Frédérique Kermarrec,et al.  Label-Free Electric Monitoring of Human Cancer Cells as a Potential Diagnostic Tool. , 2016, Analytical chemistry.

[16]  T. Turkington,et al.  A Quantitative PCR System for Measuring Sclerotinia sclerotiorum in Canola (Brassica napus). , 2016, Plant disease.

[17]  P. Bokor,et al.  Use of petal test in early-flowering varieties of oilseed rape (Brassica napus L.) for predicting the infection pressure of Sclerotinia sclerotiorum (Lib.) de Bary , 2016 .

[18]  A. Wallenhammar,et al.  Monitoring of plant and airborne inoculum of Sclerotinia sclerotiorum in spring oilseed rape using real‐time PCR , 2015 .

[19]  A. Minerick,et al.  Characterizing the dielectric properties of human mesenchymal stem cells and the effects of charged elastin-like polypeptide copolymer treatment. , 2014, Biomicrofluidics.

[20]  Y. J. Lo,et al.  Measurement of the Clausius-Mossotti factor of generalized dielectrophoresis , 2014 .

[21]  Maryam Tabrizian,et al.  Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. , 2013, Biosensors & bioelectronics.

[22]  L. Krähenbühl,et al.  Assessment of 0.5 T static field exposure effect on yeast and HEK cells using electrorotation. , 2013, Biophysical journal.

[23]  Peter R. C. Gascoyne,et al.  Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field‐flow fractionation , 2013, Electrophoresis.

[24]  Liqun Wu,et al.  Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. , 2012, Biomicrofluidics.

[25]  M. Sano,et al.  Contactless dielectrophoretic spectroscopy: Examination of the dielectric properties of cells found in blood , 2011, Electrophoresis.

[26]  Pierre O. Bagnaninchi,et al.  Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing , 2011, Proceedings of the National Academy of Sciences.

[27]  P. Gascoyne Dielectrophoretic-field flow fractionation analysis of dielectric, density, and deformability characteristics of cells and particles. , 2009, Analytical chemistry.

[28]  U. Lei,et al.  Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis , 2007 .

[29]  B. Kleinhenz,et al.  A crop loss-related forecasting model for sclerotinia stem rot in winter oilseed rape. , 2007, Phytopathology.

[30]  K. Phelps,et al.  Forecasting Sclerotinia Disease on Lettuce: A Predictive Model for Carpogenic Germination of Sclerotinia sclerotiorum Sclerotia. , 2007, Phytopathology.

[31]  P. Porter,et al.  Impact of Sclerotinia Stem Rot on Yield of Canola. , 2007, Plant disease.

[32]  Joel Voldman,et al.  Dielectrophoretic traps for single-particle patterning. , 2005, Biophysical journal.

[33]  Koji Asami,et al.  Characterization of biological cells by dielectric spectroscopy , 2002 .

[34]  Y. Feldman,et al.  Time domain dielectric spectroscopy study of human cells. II. Normal and malignant white blood cells. , 1999, Biochimica et biophysica acta.

[35]  F F Becker,et al.  Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. , 1999, Biophysical journal.

[36]  K Asami,et al.  Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. , 1996, Biophysical journal.

[37]  Makoto Sugai,et al.  Electrorotation of non-spherical cells: Theory for ellipsoidal cells with an arbitrary number of shells , 1993 .

[38]  Y. Huang,et al.  Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. , 1992, Physics in medicine and biology.

[39]  Ronald Pethig,et al.  Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes , 1992 .

[40]  T. Turkington,et al.  Use of petal infestation to forecast sclerotinia stem rot of canola: the impact of diurnal and weather-related inoculum fluctuations , 1991 .

[41]  T. Tsong,et al.  Determination of electric parameters of cell membranes by a dielectrophoresis method. , 1991, Biophysical journal.

[42]  C. Cametti,et al.  Determination of cell membrane passive electrical properties using frequency domain dielectric spectroscopy technique. A new approach. , 1990, Biochimica et biophysica acta.

[43]  K. Kaler,et al.  Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. , 1990, Biophysical journal.

[44]  S Takashima,et al.  Dielectric properties of mouse lymphocytes and erythrocytes. , 1989, Biochimica et biophysica acta.

[45]  W. M. Arnold,et al.  Rotating-Field-Induced Rotation and Measurement of the Membrane Capacitance of Single Mesophyll Cells of Avena sativa , 1982 .

[46]  K. Foster,et al.  The UHF and microwave dielectric properties of normal and tumour tissues: variation in dielectric properties with tissue water content. , 1980, Physics in medicine and biology.

[47]  T. Hanai,et al.  Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. , 1980, Biophysical journal.

[48]  E. Carstensen,et al.  Passive electrical properties of microorganisms. IV. Studies of the protoplasts of Micrococcus lysodeikticus. , 1969, Biophysical journal.

[49]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall , 1967 .

[50]  H. A. Pohl,et al.  Separation of Living and Dead Cells by Dielectrophoresis , 1966, Science.

[51]  B. Nelson,et al.  Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. , 2006, Molecular plant pathology.

[52]  Frank J. Millero,et al.  Viscosity of water at various temperatures , 1969 .