Bounded-degree factors of lacunary multivariate polynomials

In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary representation and a degree bound d and computes the irreducible factors of degree at most d of f in time polynomial in the lacunary size of f and in d. Our algorithm, which is valid for any field of zero characteristic, is based on a new gap theorem that enables reducing the problem to several instances of (a) the univariate case and (b) low-degree multivariate factorization.The reduction algorithms we propose are elementary in that they only manipulate the exponent vectors of the input polynomial. The proof of correctness and the complexity bounds rely on the Newton polytope of the polynomial, where the underlying valued field consists of Puiseux series in a single variable.

[1]  Victor Y. Pan,et al.  Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..

[2]  Jérémy Berthomieu,et al.  Reduction of bivariate polynomials from convex-dense to dense, with application to factorizations , 2012, Math. Comput..

[3]  Pascal Koiran,et al.  On the Intersection of a Sparse Curve and a Low-Degree Curve: A Polynomial Version of the Lost Theorem , 2013, Discret. Comput. Geom..

[4]  Joris van der Hoeven,et al.  Even faster integer multiplication , 2014, J. Complex..

[5]  J. Shepherdson,et al.  On the factorisation of polynomials in a finite number of steps , 1955 .

[6]  Lajos Rónyai,et al.  Factoring polynomials over finite fields , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[7]  Marek Karpinski,et al.  On the Computational Hardness of Testing Square-Freeness of Sparse Polynomials , 1999, AAECC.

[8]  Michael Sagraloff,et al.  A near-optimal algorithm for computing real roots of sparse polynomials , 2014, ISSAC.

[9]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[10]  H. Lenstra On the factorization of lacunary polynomials , 1999 .

[11]  J. Maurice Rojas,et al.  Sub-linear root detection, and new hardness results, for sparse polynomials over finite fields , 2012, ISSAC '13.

[12]  Paul S. Wang Factoring multivariate polynomials over algebraic number fields , 1976 .

[13]  Alin Bostan,et al.  Wronskians and Linear Independence , 2010, Am. Math. Mon..

[14]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Bruno Grenet,et al.  Factoring bivariate lacunary polynomials without heights , 2012, ISSAC '13.

[17]  Martin Fürer,et al.  Faster integer multiplication , 2007, STOC '07.

[18]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[19]  A. Galligo,et al.  Four lectures on polynomial absolute factorization , 2005 .

[20]  Teresa Krick,et al.  Factoring bivariate sparse (lacunary) polynomials , 2007, J. Complex..

[21]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[22]  Erich Kaltofen,et al.  Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic number fields , 2006, ISSAC '06.

[23]  Martin Avendano,et al.  The number of roots of a lacunary bivariate polynomial on a line , 2009, J. Symb. Comput..

[24]  Bruno Grenet Lacunaryx: computing bounded-degree factors of lacunary polynomials , 2016, ACCA.

[25]  Martin Fürer Faster integer multiplication , 2007, STOC '07.

[26]  Erich Kaltofen,et al.  On the complexity of factoring bivariate supersparse (Lacunary) polynomials , 2005, ISSAC.

[27]  Erich Kaltofen,et al.  Approximate factorization of multivariate polynomials using singular value decomposition , 2008, J. Symb. Comput..

[28]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[29]  David A. Plaisted Sparse Complex Polynomials and Polynomial Reducibility , 1977, J. Comput. Syst. Sci..

[30]  Felipe Cucker,et al.  A Polynomial Time Algorithm for Diophantine Equations in One Variable , 1999, J. Symb. Comput..

[31]  Éric Schost,et al.  Differential equations for algebraic functions , 2007, ISSAC '07.

[32]  Bruno Grenet Computing low-degree factors of lacunary polynomials: a Newton-Puiseux approach , 2014, ISSAC.

[33]  Arjen K. Lenstra,et al.  Factoring polynominals over algebraic number fields , 1983, EUROCAL.