Regulation of CaMKII signaling in cardiovascular disease

Heart failure (HF) is a major cause of death in the developed countries (Murray and Lopez, 1996; Koitabashi and Kass, 2012). Adverse cardiac remodeling that precedes heart muscle dysfunction is characterized by a myriad of molecular changes affecting the cardiomyocyte. Among these, alterations in protein kinase pathways play often an important mediator role since they link upstream pathologic stress signaling with downstream regulatory programs and thus affect both the structural and functional integrity of the heart muscle. In the context of cardiac disease, a profound understanding for the overriding mechanisms that regulate protein kinase activity (protein-protein interactions, post-translational modifications, or targeting via anchoring proteins) is crucial for the development of specific and effective pharmacological treatment strategies targeting the failing myocardium. In this review, we focus on several mechanisms of upstream regulation of Ca2+-calmodulin-dependent protein kinase II that play a relevant pathophysiological role in the development and progression of cardiovascular disease; precise targeting of these mechanisms might therefore represent novel and promising tools for prevention and treatment of HF.

[1]  A. Marks,et al.  Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging. , 2015, Current molecular pharmacology.

[2]  Maddalena Illario,et al.  Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy , 2015, PloS one.

[3]  Rosana A Bassani,et al.  Chasing cardiac physiology and pathology down the CaMKII cascade. , 2015, American journal of physiology. Heart and circulatory physiology.

[4]  D. Terrar,et al.  The importance of Ca2+-dependent mechanisms for the initiation of the heartbeat , 2015, Front. Physiol..

[5]  M. Olkowicz,et al.  AMP-regulated protein kinase activity in the hearts of mice treated with low- or high-fat diet measured using novel LC–MS method , 2015, Molecular and Cellular Biochemistry.

[6]  M. Conti,et al.  A CaMKII/PDE4D negative feedback regulates cAMP signaling , 2015, Proceedings of the National Academy of Sciences.

[7]  E. Kranias,et al.  Phospholamban interactome in cardiac contractility and survival: A new vision of an old friend. , 2014, Journal of molecular and cellular cardiology.

[8]  Nien‐Pei Tsai Ubiquitin proteasome system-mediated degradation of synaptic proteins: An update from the postsynaptic side. , 2014, Biochimica et biophysica acta.

[9]  Jin Yang,et al.  Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes. , 2014, Journal of molecular and cellular cardiology.

[10]  N. Gretz,et al.  CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury , 2014, EMBO molecular medicine.

[11]  Michael D. Schneider,et al.  Cardiac CaM Kinase II Genes &dgr; and &ggr; Contribute to Adverse Remodeling but Redundantly Inhibit Calcineurin-Induced Myocardial Hypertrophy , 2014, Circulation.

[12]  Jeffrey R. Erickson,et al.  Mechanisms of CaMKII Activation in the Heart , 2014, Front. Pharmacol..

[13]  J. Backs,et al.  Integrated mechanisms of CaMKII-dependent ventricular remodeling , 2014, Front. Pharmacol..

[14]  Niels Voigt,et al.  Calcium dysregulation in atrial fibrillation: the role of CaMKII , 2014, Front. Pharmacol..

[15]  Charles B. B. Gray,et al.  CaMKIIdelta subtypes: localization and function , 2014, Front. Pharmacol..

[16]  D. Leosco,et al.  Negative Impact of &bgr;-Arrestin-1 on Post-Myocardial Infarction Heart Failure via Cardiac and Adrenal-Dependent Neurohormonal Mechanisms , 2014, Hypertension.

[17]  E. Niggli,et al.  NO-dependent CaMKII activation during β-adrenergic stimulation of cardiac muscle. , 2013, Cardiovascular research.

[18]  R. Weiss,et al.  Oxidized Ca2+/Calmodulin-Dependent Protein Kinase II Triggers Atrial Fibrillation , 2013, Circulation.

[19]  Gerald W. Hart,et al.  Diabetic Hyperglycemia activates CaMKII and Arrhythmias by O linked Glycosylation , 2013, Nature.

[20]  J. Parissis,et al.  Biomarkers in Congestive Heart Failure , 2013 .

[21]  K. Toutouzas,et al.  Cardiac Biomarkers in Acute Coronary Syndromes , 2013 .

[22]  Onju Ham,et al.  MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting CaMKIIδ. , 2013, Biochemical and biophysical research communications.

[23]  A. Shah,et al.  Novel aspects of ROS signalling in heart failure , 2013, Basic Research in Cardiology.

[24]  S. Marx,et al.  Dysfunctional ryanodine receptors in the heart: new insights into complex cardiovascular diseases. , 2013, Journal of molecular and cellular cardiology.

[25]  Jun Ren,et al.  Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. , 2013, American journal of physiology. Heart and circulatory physiology.

[26]  I. Efimov,et al.  Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. , 2013, The Journal of clinical investigation.

[27]  Melanie Y. White,et al.  Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics , 2013, Genome Medicine.

[28]  D. Bers,et al.  Epac2 Mediates Cardiac &bgr;1-Adrenergic–Dependent Sarcoplasmic Reticulum Ca2+ Leak and Arrhythmia , 2013, Circulation.

[29]  D. Bers,et al.  Acute β-Adrenergic Activation Triggers Nuclear Import of Histone Deacetylase 5 and Delays Gq-induced Transcriptional Activation* , 2012, The Journal of Biological Chemistry.

[30]  M. Illario,et al.  Sisters Acts: Converging Signaling Between CaMKII and CaMKIV, Two Members of the Same Family , 2012, Translational medicine @ UniSa.

[31]  G. Condorelli,et al.  CaMK4 Gene Deletion Induces Hypertension , 2012, Journal of the American Heart Association.

[32]  A. Mattiazzi,et al.  Early apoptosis in different models of cardiac hypertrophy induced by high renin-angiotensin system activity involves CaMKII. , 2012, Journal of applied physiology.

[33]  M. Avkiran,et al.  Neurohormonal Regulation of Cardiac Histone Deacetylase 5 Nuclear Localization by Phosphorylation-Dependent and Phosphorylation-Independent Mechanisms , 2012, Circulation research.

[34]  Mark E. Anderson,et al.  Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. , 2012, Circulation research.

[35]  T. Wieland,et al.  Role of RyR2 Phosphorylation at S2814 During Heart Failure Progression , 2012, Circulation research.

[36]  Donald M. Bers,et al.  Requirement for Ca 2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice (Journal of Clinical Investigation (2009) 119, 5, (1230-1240) doi: 10.1172/JCI38022) , 2012 .

[37]  E. Olson,et al.  MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death. , 2012, The Journal of clinical investigation.

[38]  D. Kass,et al.  Reverse remodeling in heart failure—mechanisms and therapeutic opportunities , 2012, Nature Reviews Cardiology.

[39]  R. Lefkowitz,et al.  Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. , 2012, Annual review of pharmacology and toxicology.

[40]  D. Bers,et al.  Location Matters: Clarifying the Concept of Nuclear and Cytosolic CaMKII Subtypes , 2011, Circulation research.

[41]  Mark E. Anderson,et al.  Oxidation of CaMKII determines the cardiotoxic effects of aldosterone , 2011, Nature Medicine.

[42]  E. Olson,et al.  Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4 , 2011, The Journal of cell biology.

[43]  Donald M Bers,et al.  CaMKII in myocardial hypertrophy and heart failure. , 2011, Journal of molecular and cellular cardiology.

[44]  J. Molkentin,et al.  Protein kinase Cα as a heart failure therapeutic target. , 2011, Journal of molecular and cellular cardiology.

[45]  D. Bers,et al.  Fluorescence Resonance Energy Transfer–Based Sensor Camui Provides New Insight Into Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II Activation in Intact Cardiomyocytes , 2011, Circulation research.

[46]  Niels Voigt,et al.  Oxidized CaMKII causes cardiac sinus node dysfunction in mice. , 2011, The Journal of clinical investigation.

[47]  T. McKinsey,et al.  β-Adrenergic receptor stimulation and activation of protein kinase A protect against α1-adrenergic-mediated phosphorylation of protein kinase D and histone deacetylase 5. , 2011, Journal of cardiac failure.

[48]  D. Bers,et al.  Reactive Oxygen Species–Activated Ca/Calmodulin Kinase II&dgr; Is Required for Late INa Augmentation Leading to Cellular Na and Ca Overload , 2011, Circulation research.

[49]  R. Webb,et al.  S-nitrosylation Inhibits Protein Kinase C–mediated Contraction in Mouse Aorta , 2011, Journal of cardiovascular pharmacology.

[50]  Mark E. Anderson,et al.  Ryanodine Receptor Phosphorylation by Calcium/Calmodulin-Dependent Protein Kinase II Promotes Life-Threatening Ventricular Arrhythmias in Mice With Heart Failure , 2010, Circulation.

[51]  D. Bers,et al.  Cardiac hypertrophy and heart failure development through Gq and CaM kinase II signaling. , 2010, Journal of cardiovascular pharmacology.

[52]  J. Gummert,et al.  Inhibition of Elevated Ca2+/Calmodulin-Dependent Protein Kinase II Improves Contractility in Human Failing Myocardium , 2010, Circulation research.

[53]  Ji Young Kim,et al.  PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy , 2010, Proceedings of the National Academy of Sciences.

[54]  N. Dhalla,et al.  Protein Kinases as Drug Development Targets for Heart Disease Therapy , 2010, Pharmaceuticals.

[55]  H. Schulman,et al.  Ca2+/calmodulin-dependent protein kinase II in heart failure , 2010 .

[56]  S. Reiken,et al.  Role of CaMKIIδ phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure , 2010, Proceedings of the National Academy of Sciences.

[57]  H. Rockman,et al.  β-Arrestin–dependent activation of Ca2+/calmodulin kinase II after β1–adrenergic receptor stimulation , 2010, The Journal of cell biology.

[58]  J. Stamler,et al.  S-Nitrosylation in Cardiovascular Signaling , 2010, Circulation research.

[59]  H. Schulman,et al.  Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation , 2010, Nature Structural &Molecular Biology.

[60]  A. Mattiazzi,et al.  Angiotensin II–Induced Oxidative Stress Resets the Ca2+ Dependence of Ca2+–Calmodulin Protein Kinase II and Promotes a Death Pathway Conserved Across Different Species , 2009, Circulation research.

[61]  Mark E. Anderson,et al.  Oxidized Calmodulin Kinase II Regulates Conduction Following Myocardial Infarction: A Computational Analysis , 2009, PLoS Comput. Biol..

[62]  Tong Zhang,et al.  Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. , 2009, The Journal of clinical investigation.

[63]  R. Ginnan,et al.  Role of Ca2+/Calmodulin‐dependent Protein Kinase II (CaMKII) in Endothelial Cells , 2009 .

[64]  S. Palaniyandi,et al.  Protein kinase C in heart failure: a therapeutic target? , 2008, Cardiovascular research.

[65]  Priyesh A. Patel,et al.  Beta-arrestin-mediated signaling in the heart. , 2008, Circulation journal : official journal of the Japanese Circulation Society.

[66]  Zhao-Wen Wang,et al.  Regulation of Synaptic Transmission by Presynaptic CaMKII and BK Channels , 2008, Molecular Neurobiology.

[67]  M. Anderson,et al.  The role of calmodulin kinase II in myocardial physiology and disease. , 2008, Physiology.

[68]  Mark E. Anderson,et al.  A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation , 2008, Cell.

[69]  E. Olson,et al.  Histone Deacetylase 5 Acquires Calcium/Calmodulin-Dependent Kinase II Responsiveness by Oligomerization with Histone Deacetylase 4 , 2008, Molecular and Cellular Biology.

[70]  Sudha Seshadri,et al.  Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes , 2007, BMC Medical Genetics.

[71]  J. Violin,et al.  β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection , 2007 .

[72]  Daniel B. McClatchy,et al.  Functional specialization of β-arrestin interactions revealed by proteomic analysis , 2007, Proceedings of the National Academy of Sciences.

[73]  M. Shoham,et al.  Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. , 2006, Journal of molecular biology.

[74]  E. Olson,et al.  CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. , 2006, The Journal of clinical investigation.

[75]  A. Nairn,et al.  Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II , 2006, The FEBS journal.

[76]  Angus C. Nairn,et al.  Structure of the Autoinhibited Kinase Domain of CaMKII and SAXS Analysis of the Holoenzyme , 2005, Cell.

[77]  D. Roden,et al.  Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice , 2005 .

[78]  L. Maier CaMKIIdelta overexpression in hypertrophy and heart failure: cellular consequences for excitation-contraction coupling. , 2005, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[79]  M. Vallano,et al.  Nuclear Calpain Regulates Ca2+-dependent Signaling via Proteolysis of Nuclear Ca2+/Calmodulin-dependent Protein Kinase Type IV in Cultured Neurons* , 2005, Journal of Biological Chemistry.

[80]  J. Brown,et al.  Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. , 2004, Cardiovascular research.

[81]  B. Gaston,et al.  S-nitrosylation signaling in cell biology. , 2003, Molecular interventions.

[82]  Tong Zhang,et al.  The &dgr;C Isoform of CaMKII Is Activated in Cardiac Hypertrophy and Induces Dilated Cardiomyopathy and Heart Failure , 2003, Circulation research.

[83]  M. Caron,et al.  The Stability of the G Protein-coupled Receptor-β-Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation* , 2003, The Journal of Biological Chemistry.

[84]  T. Kohout,et al.  Targeting of Cyclic AMP Degradation to β2-Adrenergic Receptors by β-Arrestins , 2002, Science.

[85]  Donald M Bers,et al.  Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. , 2002, Journal of molecular and cellular cardiology.

[86]  Andy Hudmon,et al.  Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. , 2002, The Biochemical journal.

[87]  H. Schulman,et al.  Regulation of signal transduction by protein targeting: the case for CaMKII. , 2001, Biochemical and biophysical research communications.

[88]  Santiago Lamas,et al.  Nitrosylation The Prototypic Redox-Based Signaling Mechanism , 2001, Cell.

[89]  H. Schulman,et al.  Phosphorylation at the Nuclear Localization Signal of Ca2+/Calmodulin-dependent Protein Kinase II Blocks Its Nuclear Targeting* , 1998, The Journal of Biological Chemistry.

[90]  P. Karczewski,et al.  Differentiation‐dependent expression of cardiac δ‐CaMKII isoforms , 1998 .

[91]  B. Chait,et al.  A Molecular Redox Switch on p21ras , 1997, The Journal of Biological Chemistry.

[92]  Alan D. Lopez,et al.  Evidence-Based Health Policy--Lessons from the Global Burden of Disease Study , 1996, Science.

[93]  P. Cohen,et al.  On target with a new mechanism for the regulation of protein phosphorylation. , 1993, Trends in biochemical sciences.

[94]  H. Schulman,et al.  Calmodulin Trapping by Calcium-Calmodulin-Dependent Protein Kinase , 1992, Science.

[95]  P. Greengard,et al.  Ca2+/calmodulin-dependent protein kinase II: identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin-independence. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[96]  V. Gurevich,et al.  Arrestins as multi-functional signaling adaptors. , 2008, Handbook of experimental pharmacology.

[97]  E. Olson,et al.  CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. , 2007, The Journal of biological chemistry.

[98]  L. Maier CaMKII δ overexpression in hypertrophy and heart failure : cellular consequences for excitation-contraction coupling , 2005 .

[99]  T. Haystead,et al.  A functional proteomics approach to signal transduction. , 2003, Recent progress in hormone research.