Functional diversity for body actions in the mesencephalic locomotor region

[1]  D. Kleinfeld,et al.  Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon , 2021, Neuron.

[2]  S. Arber,et al.  A functional map for diverse forelimb actions within brainstem circuitry , 2021, Nature.

[3]  David J. Anderson,et al.  Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice , 2020, Nature.

[4]  M. Moser,et al.  A Brainstem Locomotor Circuit Drives the Activity of Speed Cells in the Medial Entorhinal Cortex , 2020, Cell reports.

[5]  Talia N. Lerner,et al.  Parvalbumin+ and Npas1+ Pallidal Neurons Have Distinct Circuit Topology and Function , 2020, The Journal of Neuroscience.

[6]  Stephano J. Chang,et al.  Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat , 2019, Front. Syst. Neurosci..

[7]  D. Surmeier,et al.  The pedunclopontine nucleus and Parkinson's disease , 2019, Neurobiology of Disease.

[8]  C. Bassetti,et al.  Pedunculopontine nucleus: An integrative view with implications on Deep Brain Stimulation , 2019, Neurobiology of Disease.

[9]  J. J. Macklin,et al.  High-performance calcium sensors for imaging activity in neuronal populations and microcompartments , 2019, Nature Methods.

[10]  J. Tepper,et al.  Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons , 2019, The Journal of Neuroscience.

[11]  E. Garcia-Rill,et al.  Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA , 2019, Clinical Neurophysiology.

[12]  Sripriya Ravindra Kumar,et al.  Systemic AAV vectors for widespread and targeted gene delivery in rodents , 2019, Nature Protocols.

[13]  S. Arber,et al.  Connecting Circuits for Supraspinal Control of Locomotion , 2018, Neuron.

[14]  Kevin M. Cury,et al.  DeepLabCut: markerless pose estimation of user-defined body parts with deep learning , 2018, Nature Neuroscience.

[15]  F. Bretzner,et al.  Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse , 2018, Current Biology.

[16]  Tipu Aziz,et al.  Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review , 2018, Movement disorders : official journal of the Movement Disorder Society.

[17]  O Kiehn,et al.  Midbrain circuits that set locomotor speed and gait selection , 2017, Nature.

[18]  Ilan Lampl,et al.  High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins , 2017, bioRxiv.

[19]  Silvia Arber,et al.  Locomotor speed control circuits in the caudal brainstem , 2017, Nature.

[20]  A. Taberner,et al.  Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region , 2017, Front. Neural Circuits.

[21]  L. Paninski,et al.  The Spatiotemporal Organization of the Striatum Encodes Action Space , 2017, Neuron.

[22]  Suneil K. Kalia,et al.  What Have We Learned About Movement Disorders from Functional Neurosurgery? , 2017, Annual review of neuroscience.

[23]  John P. Cunningham,et al.  Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex , 2017, Neuron.

[24]  V. Gradinaru,et al.  Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems , 2017, Nature Neuroscience.

[25]  J. Bolam,et al.  Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function , 2017, Neuron.

[26]  B. Lim,et al.  Activation of Pedunculopontine Glutamate Neurons Is Reinforcing , 2017, The Journal of Neuroscience.

[27]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[28]  Liam Paninski,et al.  Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data , 2016, eLife.

[29]  Michael R Berthold,et al.  KNIME for Open-Source Bioimage Analysis: A Tutorial. , 2016, Advances in anatomy, embryology, and cell biology.

[30]  Anatol C. Kreitzer,et al.  Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia , 2016, Cell.

[31]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[32]  Ryosuke Chiba,et al.  Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems , 2015, Journal of Neural Transmission.

[33]  S. Arber,et al.  Multisensory Signaling Shapes Vestibulo-Motor Circuit Specificity , 2015, Cell.

[34]  Conor Liston,et al.  Projections from neocortex mediate top-down control of memory retrieval , 2015, Nature.

[35]  M. Stryker,et al.  Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion , 2014, Neuron.

[36]  Lief E. Fenno,et al.  Targeting cells with single vectors using multiple-feature Boolean logic , 2014, Nature Methods.

[37]  Silvia Arber,et al.  Brainstem nucleus MdV mediates skilled forelimb motor tasks , 2014, Nature.

[38]  Silvia Arber,et al.  Motor-Circuit Communication Matrix from Spinal Cord to Brainstem Neurons Revealed by Developmental Origin , 2014, Cell.

[39]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[40]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[41]  J. Bolam,et al.  Topographical Organization of the Pedunculopontine Nucleus , 2011, Front. Neuroanat..

[42]  M. Morales,et al.  Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat , 2009, The European journal of neuroscience.

[43]  J. Bolam,et al.  Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations , 2008, The Journal of physiology.

[44]  R. Dubuc,et al.  Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. , 2003, Journal of neurophysiology.

[45]  Réjean Dubuc,et al.  Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys , 2003, The European journal of neuroscience.

[46]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[47]  K Matsuyama,et al.  Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. , 2000, Journal of neurophysiology.

[48]  S. Grillner,et al.  Activity of reticulospinal neurons during locomotion in the freely behaving lamprey. , 2000, Journal of neurophysiology.

[49]  L M Jordan,et al.  ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 860: 83-93 (1998) Initiation of Locomotion in Mammals , 2022 .

[50]  D. Oorschot Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods , 1996, The Journal of comparative neurology.

[51]  S. Rossignol,et al.  Activity of medullary reticulospinal neurons during fictive locomotion. , 1993, Journal of neurophysiology.

[52]  K. Takakusaki,et al.  Neuronal constituents of postural and locomotor control systems and their interactions in cats. , 1992, Brain & development.

[53]  B. Noga,et al.  Locomotion produced in mesencephalic cats by injections of putative transmitter substances and antagonists into the medial reticular formation and the pontomedullary locomotor strip , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  E. Garcia-Rill,et al.  The mesencephalic locomotor region. I. Activation of a medullary projection site , 1987, Brain Research.

[55]  E. Garcia-Rill,et al.  The mesencephalic locomotor region (MLR) in the rat , 1984, Brain Research.

[56]  J. Krauss,et al.  World Society for Stereotactic and Functional Neurosurgery , 2015 .

[57]  G. Paxinos,et al.  Spinal projections from the presumptive midbrain locomotor region in the mouse , 2011, Brain Structure and Function.

[58]  O Hikosaka,et al.  GABAergic output of the basal ganglia. , 2007, Progress in brain research.

[59]  L. Jordan,et al.  Reversible cooling of the brainstem reveals areas required for mesencephalic locomotor region evoked treadmill locomotion , 2004, Experimental Brain Research.

[60]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[61]  M. L. Shik,et al.  [Control of walking and running by means of electric stimulation of the midbrain]. , 1966, Biofizika.