Effect of microstructure and grain boundary chemistry on slow crack growth in silicon carbide at ambient conditions

[1]  Yuming Wang,et al.  Frictional performance of silicon carbide under different lubrication conditions , 2014 .

[2]  F. Müller,et al.  Bioactivation of biomorphous silicon carbide bone implants. , 2010, Acta biomaterialia.

[3]  M. Harmer,et al.  Grain boundary complexions in ceramics and metals: An overview , 2009 .

[4]  J. Chevalier,et al.  Ceramics for medical applications: A picture for the next 20 years , 2009 .

[5]  R. M. Cannon,et al.  Stress-corrosion crack growth of Si-Na-K-Mg-Ca-P-O bioactive glasses in simulated human physiological environment. , 2007, Biomaterials.

[6]  H. Hintzen,et al.  Subcritical crack growth and power law exponent of Y–Si–Al–O(–N) glasses in aqueous environment , 2006 .

[7]  R. M. Cannon,et al.  Effects of Moisture on Grain‐Boundary Strength, Fracture, and Fatigue Properties of Alumina , 2005 .

[8]  A. Horsewell,et al.  Fracture Resistance Measurement Method for in situ Observation of Crack Mechanisms , 2005 .

[9]  R. Dauskardt,et al.  Fracture and Subcritical Crack‐Growth Behavior of Y‐Si‐Al‐O‐N Glasses and Si3N4 Ceramics , 2004 .

[10]  J. Chevalier,et al.  Slow crack-growth behavior of alumina ceramics , 2000 .

[11]  Michael J. Hoffmann,et al.  Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide , 1999 .

[12]  B. Bollen,et al.  Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature , 1997 .

[13]  Wang Hongjie,et al.  The effect of the microstructure on the static fatigue behaviour of Si3N4 , 1997 .

[14]  Young‐Wook Kim,et al.  Strength and fracture toughness of in situ-toughened silicon carbide , 1997 .

[15]  D. Munz,et al.  Subcritical crack growth in silicon carbide , 1997 .

[16]  Young‐Wook Kim,et al.  Grain Growth and Fracture Toughness of Fine‐Grained Silicon Carbide Ceramics , 1995 .

[17]  J. Chevalier,et al.  Crack Propagation Behavior of Y‐TZP Ceramics , 1995 .

[18]  C. Kim,et al.  Microstructural development and mechanical properties of pressureless-sintered SiC with plate-like grains using Al2O3-Y2O3 additives , 1994 .

[19]  S. K. Lee Effects of [alpha]-SiC versus [beta]-SiC starting powders on microstructure and fracture toughness of SiC sintered with Al[sub 2]O[sub 3]-Y[sub 2]O[sub 3] additives , 1994 .

[20]  N. Padture In situ-toughened silicon carbide , 1994 .

[21]  S. Horibe,et al.  Static fatigue in ceramic materials: influences of an intergranular glassy phase and fracture toughness , 1993, Journal of Materials Science.

[22]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[23]  Y. Yamauchi,et al.  Dynamic Fatigue Behavior of Ceramics at Room Temperature , 1988 .

[24]  D. Munz,et al.  Determination of v‐K1 Curves by a Modified Evaluation of Lifetime Measurements in Static Bending Tests , 1985 .

[25]  E. Fuller,et al.  Theory of Fatigue for Brittle Flaws Originating from Residual Stress Concentrations , 1983 .

[26]  R. C. Bradt,et al.  Strength Distributions of SiC Ceramics After Oxidation and Oxidation Under Load , 1981 .

[27]  A. Heuer,et al.  Beta-to-alpha transformation in polycrystalline SiC. II - Interfacial energetics , 1978 .

[28]  A. Heuer,et al.  β→α Transformation in Polycrystalline SiC: I, Microstructural Aspects , 1978 .

[29]  A. Heuer,et al.  β→α Transformation in Polycrystalline Sic: II, Interfacial Energetics , 1978 .

[30]  R. E. Tressler,et al.  Subcritical crack growth in silicon carbide , 1977 .

[31]  C. Greskovich,et al.  Sintering of Covalent Solids , 1976 .

[32]  A. Evans,et al.  A simple method for studying slow crack growth. , 1973 .

[33]  Anthony G. Evans,et al.  A method for evaluating the time-dependent failure characteristics of brittle materials — and its application to polycrystalline alumina , 1972 .

[34]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[35]  J. Chevalier,et al.  Global description of crack propagation in ceramics , 2006 .

[36]  L. Stobierski,et al.  Sintering of silicon carbide II. Effect of boron , 2003 .

[37]  N. Nemeth,et al.  High-temperature slow crack growth of silicon carbide determined by constant-stress-rate and constant-stress testing , 1998 .

[38]  J. Chevalier,et al.  Double-torsion testing a 3Y-TZP ceramic , 1996 .

[39]  D. K. Kim,et al.  Flaw‐Tolerance and R‐Curve Behavior of Liquid‐Phase‐Sintered Silicon Carbides with Different Microstructures , 1995 .

[40]  A. Hellwege,et al.  Elastische, piezoelektrische, pyroelektrische, piezooptische, elektrooptische Konstanten und nichtlineare dielektrische Suszeptibilitäten von Kristallen , 1984 .

[41]  R. F. Pabst,et al.  Critical and Subcritical Crack Extension in Al2O3and SiC as Functions of Temperature, Environment and Loading Rate , 1983 .

[42]  J. W. Edington,et al.  KIc and Delayed Fracture Measurements on Hot‐Pressed SiC , 1979 .

[43]  E. Fuller,et al.  An Evaluation of Double-Torsion Testing—Experimental , 1979 .

[44]  Sheldon M. Wiederhorn,et al.  Subcritical Crack Growth in Ceramics , 1974 .