Effect of microstructure and grain boundary chemistry on slow crack growth in silicon carbide at ambient conditions
暂无分享,去创建一个
J. Chevalier | E. Saiz | N. Ni | F. Giuliani | L. Vandeperre | N. Nasiri
[1] Yuming Wang,et al. Frictional performance of silicon carbide under different lubrication conditions , 2014 .
[2] F. Müller,et al. Bioactivation of biomorphous silicon carbide bone implants. , 2010, Acta biomaterialia.
[3] M. Harmer,et al. Grain boundary complexions in ceramics and metals: An overview , 2009 .
[4] J. Chevalier,et al. Ceramics for medical applications: A picture for the next 20 years , 2009 .
[5] R. M. Cannon,et al. Stress-corrosion crack growth of Si-Na-K-Mg-Ca-P-O bioactive glasses in simulated human physiological environment. , 2007, Biomaterials.
[6] H. Hintzen,et al. Subcritical crack growth and power law exponent of Y–Si–Al–O(–N) glasses in aqueous environment , 2006 .
[7] R. M. Cannon,et al. Effects of Moisture on Grain‐Boundary Strength, Fracture, and Fatigue Properties of Alumina , 2005 .
[8] A. Horsewell,et al. Fracture Resistance Measurement Method for in situ Observation of Crack Mechanisms , 2005 .
[9] R. Dauskardt,et al. Fracture and Subcritical Crack‐Growth Behavior of Y‐Si‐Al‐O‐N Glasses and Si3N4 Ceramics , 2004 .
[10] J. Chevalier,et al. Slow crack-growth behavior of alumina ceramics , 2000 .
[11] Michael J. Hoffmann,et al. Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide , 1999 .
[12] B. Bollen,et al. Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature , 1997 .
[13] Wang Hongjie,et al. The effect of the microstructure on the static fatigue behaviour of Si3N4 , 1997 .
[14] Young‐Wook Kim,et al. Strength and fracture toughness of in situ-toughened silicon carbide , 1997 .
[15] D. Munz,et al. Subcritical crack growth in silicon carbide , 1997 .
[16] Young‐Wook Kim,et al. Grain Growth and Fracture Toughness of Fine‐Grained Silicon Carbide Ceramics , 1995 .
[17] J. Chevalier,et al. Crack Propagation Behavior of Y‐TZP Ceramics , 1995 .
[18] C. Kim,et al. Microstructural development and mechanical properties of pressureless-sintered SiC with plate-like grains using Al2O3-Y2O3 additives , 1994 .
[19] S. K. Lee. Effects of [alpha]-SiC versus [beta]-SiC starting powders on microstructure and fracture toughness of SiC sintered with Al[sub 2]O[sub 3]-Y[sub 2]O[sub 3] additives , 1994 .
[20] N. Padture. In situ-toughened silicon carbide , 1994 .
[21] S. Horibe,et al. Static fatigue in ceramic materials: influences of an intergranular glassy phase and fracture toughness , 1993, Journal of Materials Science.
[22] B. Lawn. Fracture of Brittle Solids by Brian Lawn , 1993 .
[23] Y. Yamauchi,et al. Dynamic Fatigue Behavior of Ceramics at Room Temperature , 1988 .
[24] D. Munz,et al. Determination of v‐K1 Curves by a Modified Evaluation of Lifetime Measurements in Static Bending Tests , 1985 .
[25] E. Fuller,et al. Theory of Fatigue for Brittle Flaws Originating from Residual Stress Concentrations , 1983 .
[26] R. C. Bradt,et al. Strength Distributions of SiC Ceramics After Oxidation and Oxidation Under Load , 1981 .
[27] A. Heuer,et al. Beta-to-alpha transformation in polycrystalline SiC. II - Interfacial energetics , 1978 .
[28] A. Heuer,et al. β→α Transformation in Polycrystalline SiC: I, Microstructural Aspects , 1978 .
[29] A. Heuer,et al. β→α Transformation in Polycrystalline Sic: II, Interfacial Energetics , 1978 .
[30] R. E. Tressler,et al. Subcritical crack growth in silicon carbide , 1977 .
[31] C. Greskovich,et al. Sintering of Covalent Solids , 1976 .
[32] A. Evans,et al. A simple method for studying slow crack growth. , 1973 .
[33] Anthony G. Evans,et al. A method for evaluating the time-dependent failure characteristics of brittle materials — and its application to polycrystalline alumina , 1972 .
[34] Mel I. Mendelson,et al. Average Grain Size in Polycrystalline Ceramics , 1969 .
[35] J. Chevalier,et al. Global description of crack propagation in ceramics , 2006 .
[36] L. Stobierski,et al. Sintering of silicon carbide II. Effect of boron , 2003 .
[37] N. Nemeth,et al. High-temperature slow crack growth of silicon carbide determined by constant-stress-rate and constant-stress testing , 1998 .
[38] J. Chevalier,et al. Double-torsion testing a 3Y-TZP ceramic , 1996 .
[39] D. K. Kim,et al. Flaw‐Tolerance and R‐Curve Behavior of Liquid‐Phase‐Sintered Silicon Carbides with Different Microstructures , 1995 .
[40] A. Hellwege,et al. Elastische, piezoelektrische, pyroelektrische, piezooptische, elektrooptische Konstanten und nichtlineare dielektrische Suszeptibilitäten von Kristallen , 1984 .
[41] R. F. Pabst,et al. Critical and Subcritical Crack Extension in Al2O3and SiC as Functions of Temperature, Environment and Loading Rate , 1983 .
[42] J. W. Edington,et al. KIc and Delayed Fracture Measurements on Hot‐Pressed SiC , 1979 .
[43] E. Fuller,et al. An Evaluation of Double-Torsion Testing—Experimental , 1979 .
[44] Sheldon M. Wiederhorn,et al. Subcritical Crack Growth in Ceramics , 1974 .