Protein expression systems for structural genomics and proteomics.

[1]  O. Nureki,et al.  Selenomethionine incorporation into a protein by cell-free synthesis , 2004, Journal of Structural and Functional Genomics.

[2]  M. Luo,et al.  Parallel cloning, expression, purification and crystallization of human proteins for structural genomics. , 2002, Acta crystallographica. Section D, Biological crystallography.

[3]  Tomio Ogasawara,et al.  A cell-free protein synthesis system for high-throughput proteomics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Holz,et al.  High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. , 2002, Journal of biotechnology.

[5]  Adam Godzik,et al.  Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Terwilliger,et al.  Engineering soluble proteins for structural genomics , 2002, Nature Biotechnology.

[7]  N. Dixon,et al.  NMR analysis of in vitro‐synthesized proteins without purification: a high‐throughput approach , 2002, FEBS letters.

[8]  F. Collart,et al.  High throughput methods for gene cloning and expression. , 2002, Protein expression and purification.

[9]  V. Erdmann,et al.  An Improved Protein Bioreactor , 2002, Molecular & Cellular Proteomics.

[10]  F. Collart,et al.  A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. , 2002, Protein expression and purification.

[11]  Yasuo Shinohara,et al.  Cell‐free protein synthesis on a microchip , 2002, Proteomics.

[12]  Ikuo Fujii,et al.  Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system , 2002, FEBS letters.

[13]  Tomio Ogasawara,et al.  A bilayer cell‐free protein synthesis system for high‐throughput screening of gene products , 2002, FEBS letters.

[14]  D. Wishart,et al.  An NMR approach to structural proteomics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  H. Dyson,et al.  Coupling of folding and binding for unstructured proteins. , 2002, Current opinion in structural biology.

[16]  Joanna S Albala,et al.  Accelerating code to function: sizing up the protein production line. , 2002, Current opinion in chemical biology.

[17]  L. Saidi,et al.  Structural genomics and signaling domains. , 2002, Trends in biochemical sciences.

[18]  P. Nordlund,et al.  Screening for soluble expression of recombinant proteins in a 96-well format. , 2001, Analytical biochemistry.

[19]  M. Grütter,et al.  Structural genomics: opportunities and challenges. , 2001, Current opinion in chemical biology.

[20]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[21]  M. Gautier,et al.  NMR monitoring of accumulation and folding of 15N-labeled protein overexpressed in Pichia pastoris. , 2001, Protein expression and purification.

[22]  Chris Sander,et al.  Completeness in structural genomics , 2001, Nature Structural Biology.

[23]  Gerhard Wagner,et al.  A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins , 2001, Journal of biomolecular NMR.

[24]  F. Inagaki,et al.  Random PCR-based screening for soluble domains using green fluorescent protein. , 2001, Biochemical and biophysical research communications.

[25]  Yutaka Kuroda,et al.  Structural genomics projects in Japan , 2000, Nature Structural Biology.

[26]  Cheryl H. Arrowsmith,et al.  Protein production: feeding the crystallographers and NMR spectroscopists , 2000, Nature Structural Biology.

[27]  Mark Gerstein,et al.  Structural proteomics of an archaeon , 2000, Nature Structural Biology.

[28]  Sung-Hou Kim,et al.  tructural genomics of microbes: an objective , 2000 .

[29]  M Gerstein,et al.  Structural proteomics: prospects for high throughput sample preparation. , 2000, Progress in biophysics and molecular biology.

[30]  Y Endo,et al.  A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Terwilliger,et al.  Rapid protein-folding assay using green fluorescent protein , 1999, Nature Biotechnology.

[32]  Yasuhiko Yoshida,et al.  Cell‐free production and stable‐isotope labeling of milligram quantities of proteins , 1999, FEBS letters.

[33]  E D Laue,et al.  Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis , 1998, Journal of biomolecular NMR.

[34]  T. Kigawa,et al.  Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis , 1995, Journal of biomolecular NMR.

[35]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[36]  A. Spirin,et al.  A continuous cell-free translation system capable of producing polypeptides in high yield. , 1988, Science.