A Hybrid Linear Logic for Constrained Transition Systems with Applications to Molecular Biology

Linear implication can represent state transitions, but real transition systems operate under temporal, stochastic or probabilistic constraints that are not directly representable in ordinary linear logic. We propose a general modal extension of intuitionistic linear logic where logical truth is indexed by constraints and hybrid connectives combine constraint reasoning with logical reasoning. The logic has a focused cut-free sequent calculus that can be used to internalize the rules of particular constrained transition systems; we illustrate this with an adequate encoding of the synchronous stochastic pi-calculus. We also present some preliminary experiments of direct encoding of biological systems in the logic.

[1]  Robert J. Simmons,et al.  Linear Logical Algorithms , 2008, ICALP.

[2]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[3]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[4]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[5]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[6]  Frank Pfenning,et al.  An Authorization Logic With Explicit Time , 2008, 2008 21st IEEE Computer Security Foundations Symposium.

[7]  Vincent Danos,et al.  Formal Molecular Biology Done in CCS-R , 2007, Electron. Notes Theor. Comput. Sci..

[8]  Dale Miller,et al.  Canonical Sequent Proofs via Multi-Focusing , 2008, IFIP TCS.

[9]  Jason Reed Hybridizing a Logical Framework , 2007, Electron. Notes Theor. Comput. Sci..

[10]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[11]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[12]  D. Walker,et al.  A concurrent logical framework I: Judgments and properties , 2003 .

[13]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[14]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[15]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[16]  David Walker,et al.  A Concurrent Logical Framework II: Examples and Applications , 2003 .

[17]  Luca Cardelli,et al.  A Correct Abstract Machine for the Stochastic Pi-calculus , 2004 .

[18]  Marco Bozzano,et al.  A Logic-Based Approach to Model Checking of Parameterized and Infinite-State Systems , 2002 .

[19]  L. Rogers,et al.  Diffusions, Markov Processes and Martingales, Vol. 1, Foundations. , 1996 .

[20]  Frank Pfenning,et al.  Type-Directed Concurrency , 2005, CONCUR.

[21]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[22]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[23]  Frank Pfenning,et al.  Using Constrained Intuitionistic Linear Logic for Hybrid Robotic Planning Problems , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[24]  Amy P. Felty,et al.  A Logical Framework for Systems Biology , 2014, FMMB.

[25]  Dale Miller The pi-Calculus as a Theory in Linear Logic: Preliminary Results , 1992, ELP.

[26]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[27]  Valeria de Paiva,et al.  Intuitionistic hybrid logic , 2006, J. Appl. Log..

[28]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[29]  Prakash Panangaden,et al.  Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes , 2003, J. Log. Algebraic Methods Program..

[30]  Robert K. Brayton,et al.  Model-checking continuous-time Markov chains , 2000, TOCL.

[31]  J. Guéron,et al.  Time and Modality , 2008 .

[32]  Frank Pfenning,et al.  A Logical Characterization of Forward and Backward Chaining in the Inverse Method , 2007, Journal of Automated Reasoning.

[33]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[34]  Frank Pfenning,et al.  Higher-order abstract syntax , 1988, PLDI '88.

[35]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[36]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[37]  Andrew Gacek,et al.  A Framework for Specifying, Prototyping, and Reasoning about Computational Systems , 2009, ArXiv.

[38]  Catuscia Palamidessi,et al.  Symbolic Bisimulations for Probabilistic Systems , 2007, Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007).

[39]  Philip Wadler,et al.  Linear Types can Change the World! , 1990, Programming Concepts and Methods.

[40]  François Fages,et al.  The Biochemical Abstract Machine BIOCHAM , 2004, CMSB.

[41]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[42]  Kaustuv Chaudhuri,et al.  A Logic for Constrained Process Calculi with Applications to Molecular Biology , 2009 .

[43]  Iliano Cervesato Typed Multiset Rewriting Specifications of Security Protocols , 2000, Electron. Notes Theor. Comput. Sci..

[44]  Catuscia Palamidessi,et al.  Symbolic Bisimulations for Probabilistic Systems , 2007 .

[45]  Luca Cardelli,et al.  A Graphical Representation for Biological Processes in the Stochastic pi-Calculus , 2006, Trans. Comp. Sys. Biology.

[46]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[47]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[48]  Dale Miller,et al.  Focusing in Linear Meta-logic , 2008, IJCAR.

[49]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[50]  Gopalan Nadathur,et al.  The Bedwyr System for Model Checking over Syntactic Expressions , 2007, CADE.

[51]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[52]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[53]  Bor-Yuh Evan Chang,et al.  A judgmental analysis of linear logic , 2003 .

[54]  Frank Pfenning,et al.  Session Types as Intuitionistic Linear Propositions , 2010, CONCUR.

[55]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[56]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[57]  Vincent Danos,et al.  Formal Molecular Biology done in CCS , 2003 .