Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating

[1]  Liisa Holm,et al.  Benchmarking fold detection by DaliLite v.5 , 2019, Bioinform..

[2]  Xiumin Yan,et al.  Distinct architecture and composition of mouse axonemal radial spoke head revealed by cryo-EM , 2019, Proceedings of the National Academy of Sciences.

[3]  Terry K. Smith,et al.  Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats , 2019, bioRxiv.

[4]  Shawn M. Douglas,et al.  Amino and PEG-Amino Graphene Oxide Grids Enrich and Protect Samples for High-resolution Single Particle Cryo-electron Microscopy , 2019, bioRxiv.

[5]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[6]  D. Agard,et al.  General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM , 2019, Proceedings of the National Academy of Sciences.

[7]  Robert E. Jinkerson,et al.  A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis , 2019, Nature Genetics.

[8]  L. Rezabkova,et al.  The roles of a flagellar HSP40 ensuring rhythmic beating , 2019, Molecular biology of the cell.

[9]  M. Ikawa,et al.  RSPH6A is required for sperm flagellum formation and male fertility in mice , 2018, Journal of Cell Science.

[10]  D. Nicastro,et al.  Asymmetric distribution and spatial switching of dynein activity generates ciliary motility , 2018, Science.

[11]  W. Sale,et al.  Fifty years of microtubule sliding in cilia , 2018, Molecular biology of the cell.

[12]  W. Sale,et al.  Ciliary Motility: Regulation of Axonemal Dynein Motors. , 2017, Cold Spring Harbor perspectives in biology.

[13]  Pinfen Yang,et al.  Radial Spokes-A Snapshot of the Motility Regulation, Assembly, and Evolution of Cilia and Flagella. , 2017, Cold Spring Harbor perspectives in biology.

[14]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[15]  Elizabeth F. Smith,et al.  The Central Apparatus of Cilia and Eukaryotic Flagella. , 2017, Cold Spring Harbor perspectives in biology.

[16]  S. King Axonemal Dynein Arms. , 2016, Cold Spring Harbor perspectives in biology.

[17]  S. Amselem,et al.  Mutations in DNAJB13, Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. , 2016, American journal of human genetics.

[18]  David A. Agard,et al.  Anisotropic Correction of Beam-induced Motion for Improved Single-particle Electron Cryo-microscopy , 2016, bioRxiv.

[19]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[20]  J. Peters,et al.  biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes , 2016, Proceedings of the National Academy of Sciences.

[21]  H. Omran,et al.  Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects , 2015 .

[22]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[23]  S. Amselem,et al.  RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. , 2015, American journal of human genetics.

[24]  S. Roy,et al.  SnapShot: Motile Cilia , 2015, Cell.

[25]  T. Penning,et al.  The aldo-keto reductases (AKRs): Overview. , 2015, Chemico-biological interactions.

[26]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[27]  P. Koprowski,et al.  The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia , 2015, Molecular biology of the cell.

[28]  W. Sale,et al.  A Structural Basis for How Motile Cilia Beat. , 2014, Bioscience.

[29]  L. Ostrowski,et al.  Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia , 2014, Nature Communications.

[30]  M. Kikkawa,et al.  Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity , 2014, The Journal of cell biology.

[31]  B. Housset,et al.  Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. , 2013, American journal of human genetics.

[32]  Julian N. Rosenberg,et al.  Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. , 2013, The Plant journal : for cell and molecular biology.

[33]  Pinfen Yang,et al.  A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex , 2012, The Journal of cell biology.

[34]  D. Nicastro,et al.  The CSC connects three major axonemal complexes involved in dynein regulation , 2012, Molecular biology of the cell.

[35]  Pinfen Yang,et al.  The DPY-30 Domain and Its Flanking Sequence Mediate the Assembly and Modulation of Flagellar Radial Spoke Complexes , 2012, Molecular and Cellular Biology.

[36]  J. Rosenbaum,et al.  The versatile molecular complex component LC8 promotes several distinct steps of flagellar assembly , 2012, The Journal of cell biology.

[37]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[38]  D. Nicastro,et al.  Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella , 2012, Molecular biology of the cell.

[39]  K. Bui,et al.  Cryoelectron tomography of radial spokes in cilia and flagella , 2011, The Journal of cell biology.

[40]  D. Nicastro,et al.  The CSC is required for complete radial spoke assembly and wild-type ciliary motility , 2011, Molecular biology of the cell.

[41]  W. Sale,et al.  Sequential assembly of flagellar radial spokes , 2011, Cytoskeleton.

[42]  J. Rosenbaum,et al.  Subunit interactions within the Chlamydomonas flagellar spokehead , 2011, Cytoskeleton.

[43]  C. Lindemann,et al.  Flagellar and ciliary beating: the proven and the possible , 2010, Journal of Cell Science.

[44]  Pinfen Yang,et al.  Chlamydomonas mutants display reversible deficiencies in flagellar beating and axonemal assembly , 2010, Cytoskeleton.

[45]  Colin A. Johnson,et al.  Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. , 2009, American journal of human genetics.

[46]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[47]  C. Lindemann,et al.  Evidence for axonemal distortion during the flagellar beat of Chlamydomonas. , 2007, Cell motility and the cytoskeleton.

[48]  R. Vale,et al.  μManager: Open Source Software for Light Microscope Imaging , 2007, Microscopy Today.

[49]  John R Yates,et al.  Validation of Tandem Mass Spectrometry Database Search Results Using DTASelect , 2006, Current protocols in bioinformatics.

[50]  G. Pazour,et al.  Radial spoke proteins of Chlamydomonas flagella , 2006, Journal of Cell Science.

[51]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[52]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[53]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[54]  D. Mitchell Orientation of the central pair complex during flagellar bend formation in Chlamydomonas. , 2003, Cell motility and the cytoskeleton.

[55]  서정헌,et al.  반도체 공정 overview , 2001 .

[56]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[57]  E. O'Toole,et al.  The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. , 2001, Molecular biology of the cell.

[58]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[59]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components , 1981, The Journal of cell biology.

[60]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: genetic analysis of assembly and function , 1981, The Journal of cell biology.

[61]  G. Witman,et al.  Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components , 1978, The Journal of cell biology.

[62]  P. Satir,et al.  THE STRUCTURAL BASIS OF CILIARY BEND FORMATION , 1974, The Journal of cell biology.

[63]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[64]  S. Hutner,et al.  SOME APPROACHES TO THE STUDY OF THE ROLE OF METALS IN THE METABOLISM OF MICROORGANISMS , 2016 .

[65]  Elizabeth F. Smith Email correspondence , 2012 .

[66]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.