The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury

Mitochondria play a critical role in maintaining cellular function by ATP production. They are also a source of reactive oxygen species (ROS) and proapoptotic factors. The role of mitochondria has been established in many aspects of cell physiology/pathophysiology, including cell signaling. Mitochondria may deteriorate under various pathological conditions, including ischemia-reperfusion (IR) injury. Mitochondrial injury can be one of the main causes for cardiac and other tissue injuries by energy stress and overproduction of toxic reactive oxygen species, leading to oxidative stress, elevated calcium and apoptotic and necrotic cell death. However, the interplay among these processes in normal and pathological conditions is still poorly understood. Mitochondria play a critical role in cardiac IR injury, where they are directly involved in several pathophysiological mechanisms. We also discuss the role of mitochondria in the context of mitochondrial dynamics, specializations and heterogeneity. Also, we wanted to stress the existence of morphologically and functionally different mitochondrial subpopulations in the heart that may have different sensitivities to diseases and IR injury. Therefore, various cardioprotective interventions that modulate mitochondrial stability, dynamics and turnover, including various pharmacologic agents, specific mitochondrial antioxidants and uncouplers, and ischemic preconditioning can be considered as the main strategies to protect mitochondrial and cardiovascular function and thus enhance longevity.

[1]  X. Geng,et al.  Anti-Inflammatory and Antioxidant Effect of Eucommia ulmoides Polysaccharide in Hepatic Ischemia-Reperfusion Injury by Regulating ROS and the TLR-4-NF-κB Pathway , 2020, BioMed research international.

[2]  S. Vogt,et al.  Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase , 2020, Journal of Molecular Medicine.

[3]  Jin Wang,et al.  Melatonin improves mitochondrial biogenesis through the AMPK/PGC1α pathway to attenuate ischemia/reperfusion-induced myocardial damage , 2020, Aging.

[4]  M. He,et al.  Capsaicin Alleviates the Deteriorative Mitochondrial Function by Upregulating 14-3-3η in Anoxic or Anoxic/Reoxygenated Cardiomyocytes , 2020, Oxidative medicine and cellular longevity.

[5]  G. Faggian,et al.  Cocoa Flavonoids Reduce Inflammation and Oxidative Stress in a Myocardial Ischemia-Reperfusion Experimental Model , 2020, Antioxidants.

[6]  A. Christensen,et al.  More than just a powerhouse , 2020, Nature Plants.

[7]  Jun Ren,et al.  Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[8]  K. Boengler,et al.  P66shc and its role in ischemic cardiovascular diseases , 2019, Basic Research in Cardiology.

[9]  K. Khalili,et al.  Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease , 2018, Journal of cellular physiology.

[10]  L. Becker,et al.  Increased Survival Time With SS-31 After Prolonged Cardiac Arrest in Rats. , 2018, Heart, Lung and Circulation.

[11]  B. O’Rourke,et al.  Mitochondrial transplantation in humans: “magical” cure or cause for concern? , 2018, The Journal of clinical investigation.

[12]  S. Javadov,et al.  Divergent Effects of Cyclophilin-D Inhibition on the Female Rat Heart: Acute Versus Chronic Post-Myocardial Infarction , 2018, Cellular Physiology and Biochemistry.

[13]  S. Zervou,et al.  The creatine kinase system as a therapeutic target for myocardial ischaemia–reperfusion injury , 2018, Biochemical Society transactions.

[14]  T. Finkel,et al.  The role of mitochondria in aging , 2018, The Journal of clinical investigation.

[15]  Jun Ren,et al.  ER–Mitochondria Microdomains in Cardiac Ischemia–Reperfusion Injury: A Fresh Perspective , 2018, Front. Physiol..

[16]  Giou-Teng Yiang,et al.  Current Mechanistic Concepts in Ischemia and Reperfusion Injury , 2018, Cellular Physiology and Biochemistry.

[17]  Cláudia M. Deus,et al.  Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. , 2018, The international journal of biochemistry & cell biology.

[18]  S. Cadenas ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. , 2018, Free radical biology & medicine.

[19]  R. Reiter,et al.  Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas , 2017, Cellular and Molecular Life Sciences.

[20]  JangSehwan,et al.  Elucidating Mitochondrial Electron Transport Chain Supercomplexes in the Heart During Ischemia–Reperfusion , 2017 .

[21]  S. Javadov,et al.  Synchronism in mitochondrial ROS flashes, membrane depolarization and calcium sparks in human carcinoma cells. , 2017, Biochimica et biophysica acta. Bioenergetics.

[22]  P. Ferdinandy,et al.  New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases , 2017, British journal of pharmacology.

[23]  J. Lancaster,et al.  Mitochondria-meditated pathways of organ failure upon inflammation , 2017, Redox biology.

[24]  T. Sanderson,et al.  Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury , 2017, Molecular Neurobiology.

[25]  S. Javadov,et al.  Mitochondrial permeability transition in cardiac ischemia–reperfusion: whether cyclophilin D is a viable target for cardioprotection? , 2017, Cellular and Molecular Life Sciences.

[26]  C. Hoppel,et al.  Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. , 2017, Annual review of pharmacology and toxicology.

[27]  A. Consolini,et al.  Mitochondrial Bioenergetics During Ischemia and Reperfusion. , 2017, Advances in experimental medicine and biology.

[28]  S. Emani,et al.  Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury. , 2017, Advances in experimental medicine and biology.

[29]  P. Pasdois,et al.  Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning , 2016, PloS one.

[30]  R. Mailloux Application of Mitochondria-Targeted Pharmaceuticals for the Treatment of Heart Disease. , 2016, Current pharmaceutical design.

[31]  L. Maslov,et al.  Involvement of Protein Kinase C-δ in the Realization of Cardioprotective Effect of Ischemic Postconditioning , 2016, Bulletin of Experimental Biology and Medicine.

[32]  S. Tanguy,et al.  The impact of cardiac ischemia/reperfusion on the mitochondria-cytoskeleton interactions. , 2016, Biochimica et biophysica acta.

[33]  M. Dănilă,et al.  The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies , 2016, Oxidative medicine and cellular longevity.

[34]  Dandan Wu,et al.  ROS and ROS-Mediated Cellular Signaling , 2016, Oxidative medicine and cellular longevity.

[35]  Huaqiang Fang,et al.  Cyclophilin D regulates mitochondrial flashes and metabolism in cardiac myocytes. , 2016, Journal of molecular and cellular cardiology.

[36]  Zhong-wei Zhang,et al.  Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases , 2015, Oxidative medicine and cellular longevity.

[37]  P. Bernardi,et al.  Modulation of Mitochondrial Permeability Transition in Ischemia-Reperfusion Injury of the Heart. Advantages and Limitations. , 2015, Current medicinal chemistry.

[38]  A. Kuznetsov,et al.  Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle , 2015, Human molecular genetics.

[39]  N. Chandel,et al.  ROS-dependent signal transduction. , 2015, Current opinion in cell biology.

[40]  F. Akar,et al.  The Mitochondrial Translocator Protein and Arrhythmogenesis in Ischemic Heart Disease , 2015, Oxidative medicine and cellular longevity.

[41]  F. Cao,et al.  The role of the autophagy in myocardial ischemia/reperfusion injury. , 2015, Biochimica et biophysica acta.

[42]  P. Bernardi,et al.  The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection , 2015, Journal of molecular and cellular cardiology.

[43]  A. Halestrap,et al.  The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. , 2015, Journal of molecular and cellular cardiology.

[44]  M. Kohlhaas,et al.  Mitochondrial reactive oxygen species production and elimination. , 2014, Journal of molecular and cellular cardiology.

[45]  A. Grichine,et al.  Role of mitochondria-cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles. , 2014, Biochimica et biophysica acta.

[46]  J. Zweier,et al.  Cardiac Mitochondria and Reactive Oxygen Species Generation , 2014, Circulation research.

[47]  S. Kolvekar,et al.  The effect of cyclosporin-A on peri-operative myocardial injury in adult patients undergoing coronary artery bypass graft surgery: a randomised controlled clinical trial , 2014, Heart.

[48]  A. Kuznetsov,et al.  Impact of Cold Ischemia on Mitochondrial Function in Porcine Hearts and Blood Vessels , 2013, International journal of molecular sciences.

[49]  S. Javadov,et al.  Cytoskeleton and regulation of mitochondrial function: the role of beta-tubulin II , 2013, Front. Physiol..

[50]  S. Javadov,et al.  Mitochondrial Permeability Transition and Cell Death: The Role of Cyclophilin D , 2013, Front. Physiol..

[51]  D. Yellon,et al.  Myocardial ischemia-reperfusion injury: a neglected therapeutic target. , 2013, The Journal of clinical investigation.

[52]  A. Terzic,et al.  Cardiac Subsarcolemmal and Interfibrillar Mitochondria Display Distinct Responsiveness to Protection by Diazoxide , 2012, PloS one.

[53]  Fabian Fischer,et al.  Mitochondrial quality control: an integrated network of pathways. , 2012, Trends in biochemical sciences.

[54]  Wenjun Xie,et al.  Superoxide flashes reveal novel properties of mitochondrial reactive oxygen species excitability in cardiomyocytes. , 2012, Biophysical journal.

[55]  P. dos Santos,et al.  Intracellular Energetic Units regulate metabolism in cardiac cells. , 2012, Journal of molecular and cellular cardiology.

[56]  Y. Usson,et al.  Studies of the role of tubulin beta II isotype in regulation of mitochondrial respiration in intracellular energetic units in cardiac cells. , 2012, Journal of molecular and cellular cardiology.

[57]  E. Griffiths Mitochondria and heart disease. , 2012, Advances in experimental medicine and biology.

[58]  Chulhee Choi,et al.  Mitochondrial Network Determines Intracellular ROS Dynamics and Sensitivity to Oxidative Stress through Switching Inter-Mitochondrial Messengers , 2011, PloS one.

[59]  A. Garnier,et al.  Bioenergetics of the failing heart. , 2011, Biochimica et biophysica acta.

[60]  R. Gottlieb,et al.  Mitochondrial therapeutics for cardioprotection. , 2011, Current pharmaceutical design.

[61]  A. Kowaltowski,et al.  Mild mitochondrial uncoupling as a therapeutic strategy. , 2011, Current drug targets.

[62]  C. Auffray,et al.  Mitochondria-cytoskeleton interaction: distribution of β-tubulins in cardiomyocytes and HL-1 cells. , 2011, Biochimica et biophysica acta.

[63]  M. Hermann,et al.  Mitochondrial ROS production under cellular stress: comparison of different detection methods , 2011, Analytical and bioanalytical chemistry.

[64]  S. Javadov,et al.  Expression of mitochondrial fusion–fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition , 2010, Basic Research in Cardiology.

[65]  Qizhi Gong,et al.  Mitochondrial OPA1, apoptosis, and heart failure. , 2009, Cardiovascular research.

[66]  S. Javadov,et al.  Mitochondrial Permeability Transition Pore Opening as a Promising Therapeutic Target in Cardiac Diseases , 2009, Journal of Pharmacology and Experimental Therapeutics.

[67]  G. Paradies,et al.  Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. , 2009, Cell calcium.

[68]  R. Margreiter,et al.  Heterogeneity of Mitochondria and Mitochondrial Function within Cells as Another Level of Mitochondrial Complexity , 2009, International journal of molecular sciences.

[69]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[70]  Pierre Croisille,et al.  Effect of cyclosporine on reperfusion injury in acute myocardial infarction. , 2008, The New England journal of medicine.

[71]  M. Mattson,et al.  Superoxide Flashes in Single Mitochondria , 2008, Cell.

[72]  Gerhard Wiche,et al.  Plectin isoform 1b mediates mitochondrion–intermediate filament network linkage and controls organelle shape , 2008, The Journal of cell biology.

[73]  R. Margreiter,et al.  Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells , 2008, Nature Protocols.

[74]  J. Fan,et al.  Dose‐dependent protective effect of propofol against mitochondrial dysfunction in ischaemic/reperfused rat heart: role of cardiolipin , 2008, British journal of pharmacology.

[75]  H. Lung,et al.  Vimentin supports mitochondrial morphology and organization. , 2008, The Biochemical journal.

[76]  T. Langer,et al.  Quality control of mitochondria: protection against neurodegeneration and ageing , 2008, The EMBO journal.

[77]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[78]  M. Janakiraman,et al.  Survival Signaling by C-RAF: Mitochondrial Reactive Oxygen Species and Ca2+ Are Critical Targets , 2008, Molecular and Cellular Biology.

[79]  H. Szeto Mitochondria-targeted peptide antioxidants: Novel neuroprotective agents , 2006, The AAPS Journal.

[80]  N. Danial,et al.  β-Cell Mitochondria Exhibit Membrane Potential Heterogeneity That Can Be Altered by Stimulatory or Toxic Fuel Levels , 2007, Diabetes.

[81]  G. Derumeaux,et al.  Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. , 2007, American journal of physiology. Heart and circulatory physiology.

[82]  B. Stockwell,et al.  RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels , 2007, Nature.

[83]  G. Salvesen,et al.  The apoptosome: signalling platform of cell death , 2007, Nature Reviews Molecular Cell Biology.

[84]  S. Minucci,et al.  Protein Kinase C ß and Prolyl Isomerase 1 Regulate Mitochondrial Effects of the Life-Span Determinant p66Shc , 2007, Science.

[85]  J. Lemasters,et al.  Imaging of mitochondrial polarization and depolarization with cationic fluorophores. , 2007, Methods in cell biology.

[86]  M. Beal,et al.  Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases , 2006, Nature.

[87]  R. Youle,et al.  Role of Bax and Bak in mitochondrial morphogenesis , 2006, Nature.

[88]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[89]  H. Westerhoff,et al.  A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. , 2006, Antioxidants & redox signaling.

[90]  H. McBride,et al.  Mitochondria: More Than Just a Powerhouse , 2006, Current Biology.

[91]  D. Chan Mitochondria: Dynamic Organelles in Disease, Aging, and Development , 2006, Cell.

[92]  Martin Hermann,et al.  Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? , 2006, Biochimica et biophysica acta.

[93]  Luca Scorrano,et al.  The relationship between mitochondrial shape and function and the cytoskeleton. , 2006, Biochimica et biophysica acta.

[94]  V. Mils,et al.  Mitochondrial dynamics and disease, OPA1. , 2006, Biochimica et biophysica acta.

[95]  S. Javadov,et al.  Mitochondrial Permeability Transition Pore Opening as an Endpoint to Initiate Cell Death and as a Putative Target for Cardioprotection , 2006, Cellular Physiology and Biochemistry.

[96]  D. Chan,et al.  Emerging functions of mammalian mitochondrial fusion and fission. , 2005, Human molecular genetics.

[97]  M. Brand,et al.  Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. , 2005, Cell metabolism.

[98]  S. Minucci,et al.  Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis , 2005, Cell.

[99]  D. Chan,et al.  Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction* , 2005, Journal of Biological Chemistry.

[100]  M. Duchen,et al.  Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. , 2005, American journal of physiology. Heart and circulatory physiology.

[101]  G. Kroemer,et al.  Mitochondrial fusion and fission in the control of apoptosis. , 2005, Trends in cell biology.

[102]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[103]  Robert S. Balaban,et al.  Mitochondria, Oxidants, and Aging , 2005, Cell.

[104]  M. Eimre,et al.  Intracellular energetic units in healthy and diseased hearts. , 2005, Experimental and clinical cardiology.

[105]  M. Brand,et al.  Hydroxynonenal and uncoupling proteins: A model for protection against oxidative damage , 2005, BioFactors.

[106]  A. J. Lambert,et al.  Inhibitors of the Quinone-binding Site Allow Rapid Superoxide Production from Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I)* , 2004, Journal of Biological Chemistry.

[107]  H. Szeto,et al.  Cell-permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury* , 2004, Journal of Biological Chemistry.

[108]  Hajime Otani,et al.  Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. , 2004, Antioxidants & redox signaling.

[109]  Y. Usson,et al.  Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. , 2004, American journal of physiology. Heart and circulatory physiology.

[110]  D. Yule,et al.  Modulation of [Ca2+]i Signaling Dynamics and Metabolism by Perinuclear Mitochondria in Mouse Parotid Acinar Cells* , 2004, Journal of Biological Chemistry.

[111]  Y. Usson,et al.  Functional heterogeneity of mitochondria after cardiac cold ischemia and reperfusion revealed by confocal imaging , 2004, Transplantation.

[112]  A. Garnier,et al.  Energy metabolism in heart failure , 2004, The Journal of physiology.

[113]  S. Javadov,et al.  Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. , 2004, Cardiovascular research.

[114]  C. Elger,et al.  Characterization of Superoxide-producing Sites in Isolated Brain Mitochondria* , 2004, Journal of Biological Chemistry.

[115]  Laurent Argauda,et al.  Preconditioning delays Ca 2 +-induced mitochondrial permeability transition , 2004 .

[116]  L. Argaud,et al.  Preconditioning delays Ca2+-induced mitochondrial permeability transition. , 2004, Cardiovascular research.

[117]  X. Leverve,et al.  Subcellular heterogeneity of mitochondrial function and dysfunction: Evidence obtained by confocal imaging , 2004, Molecular and Cellular Biochemistry.

[118]  M. Brand,et al.  Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. , 2003, Biochemical Society transactions.

[119]  U. Izhar,et al.  Protection of myocardium by cyclosporin A and insulin: in vitro simulated ischemia study in human myocardium. , 2003, The Annals of thoracic surgery.

[120]  J. Turrens,et al.  Mitochondrial formation of reactive oxygen species , 2003, The Journal of physiology.

[121]  I. Momken,et al.  Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles , 2003, The Journal of physiology.

[122]  R. Youle,et al.  Dynamics of mitochondrial morphology in healthy cells and during apoptosis , 2003, Cell Death and Differentiation.

[123]  S. Javadov,et al.  Ischaemic Preconditioning Inhibits Opening of Mitochondrial Permeability Transition Pores in the Reperfused Rat Heart , 2003, The Journal of physiology.

[124]  T. Wallimann,et al.  Inhibition of the Mitochondrial Permeability Transition by Creatine Kinase Substrates , 2003, The Journal of Biological Chemistry.

[125]  A. Terzic,et al.  Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. , 2003, American journal of physiology. Heart and circulatory physiology.

[126]  D. A. Lee,et al.  Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. , 2003, American journal of physiology. Cell physiology.

[127]  D. Newmeyer,et al.  Mitochondria Releasing Power for Life and Unleashing the Machineries of Death , 2003, Cell.

[128]  H. Hayashi,et al.  Protective effects of hydrogen peroxide against ischemia/reperfusion injury in perfused rat hearts. , 2003, Circulation journal : official journal of the Japanese Circulation Society.

[129]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[130]  M. Thomson The regulation of mitochondrial physiology by organelle‐associated GTP‐binding proteins , 2002, Cell biochemistry and function.

[131]  T. Weatherby,et al.  Heterogeneity of the calcium‐induced permeability transition in isolated non‐synaptic brain mitochondria , 2002, Journal of neurochemistry.

[132]  Michelle K. Knowles,et al.  Cytoskeletal-assisted dynamics of the mitochondrial reticulum in living cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Jing He,et al.  Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. , 2002, Diabetes.

[134]  A. Terzic,et al.  Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[135]  P. dos Santos,et al.  Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. , 2002, American journal of physiology. Heart and circulatory physiology.

[136]  R. Benz,et al.  Negative regulation of mitochondrial VDAC channels by C-Raf kinase , 2002, BMC Cell Biology.

[137]  A. Russell,et al.  Expression of uncoupling protein-3 in subsarcolemmal and intermyofibrillar mitochondria of various mouse muscle types and its modulation by fasting. , 2002, European journal of biochemistry.

[138]  D. Yellon,et al.  Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? , 2002, Cardiovascular research.

[139]  Peter Lipp,et al.  Mitochondria are morphologically and functionally heterogeneous within cells , 2002, The EMBO journal.

[140]  Alexander Egner,et al.  Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Gary Fiskum,et al.  Generation of reactive oxygen species by the mitochondrial electron transport chain , 2002, Journal of neurochemistry.

[142]  R. Jackson,et al.  Reactive species mechanisms of cellular hypoxia-reoxygenation injury. , 2002, American journal of physiology. Cell physiology.

[143]  W. Dröge Free radicals in the physiological control of cell function. , 2002, Physiological reviews.

[144]  Pál Pacher,et al.  Propagation of the apoptotic signal by mitochondrial waves , 2001, The EMBO journal.

[145]  Ave Minajeva,et al.  Energetic Crosstalk Between Organelles: Architectural Integration of Energy Production and Utilization , 2001, Circulation research.

[146]  C. Hoppel,et al.  Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. , 2001, Journal of molecular and cellular cardiology.

[147]  M. Ashby,et al.  Perinuclear, perigranular and sub‐plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport , 2001, The EMBO journal.

[148]  A. Munnich,et al.  Clinical spectrum and diagnosis of mitochondrial disorders. , 2001, American journal of medical genetics.

[149]  T. Wallimann,et al.  Mitochondrial Creatine Kinase in Contact Sites: Interaction with Porin and Adenine Nucleotide Translocase, Role in Permeability Transition and Sensitivity to Oxidative Damage , 2001, Neurosignals.

[150]  P. Bernardi,et al.  A mitochondrial perspective on cell death. , 2001, Trends in biochemical sciences.

[151]  Steven J. Sollott,et al.  Reactive Oxygen Species (Ros-Induced) Ros Release , 2000, The Journal of experimental medicine.

[152]  M. Mavroidis,et al.  Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function , 2000, The Journal of cell biology.

[153]  L. Opie,et al.  Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. , 2000, Cardiovascular research.

[154]  C. Franceschi,et al.  Mitochondrial heterogeneity during staurosporine-induced apoptosis in HL60 cells: analysis at the single cell and single organelle level. , 2000, Cytometry.

[155]  W. Cascio,et al.  Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores. , 2000, Biophysical journal.

[156]  Guido Kroemer,et al.  Mitochondrial control of cell death , 2000, Nature Medicine.

[157]  T. Vanden Hoek,et al.  Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. , 2000, Circulation research.

[158]  B. Wieringa,et al.  Direct Evidence for the Control of Mitochondrial Respiration by Mitochondrial Creatine Kinase in Oxidative Muscle Cells in Situ * , 2000, The Journal of Biological Chemistry.

[159]  G. Paradies,et al.  The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles , 2000, FEBS letters.

[160]  R. Jensen,et al.  Division versus Fusion: Dnm1p and Fzo1p Antagonistically Regulate Mitochondrial Shape , 1999, The Journal of cell biology.

[161]  A. Takeshita,et al.  Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. , 1999, Circulation research.

[162]  G. Paradies,et al.  Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. , 1999, Free radical biology & medicine.

[163]  D. Wallace Mitochondrial diseases in man and mouse. , 1999, Science.

[164]  P. Bernardi,et al.  Mitochondrial transport of cations: channels, exchangers, and permeability transition. , 1999, Physiological reviews.

[165]  G. Hajnóczky,et al.  Quasi‐synaptic calcium signal transmission between endoplasmic reticulum and mitochondria , 1999, The EMBO journal.

[166]  Michael P. Yaffe,et al.  Dynamic mitochondria , 1999, Nature Cell Biology.

[167]  D. Williams,et al.  Role of mitochondria in calcium regulation of spontaneously contracting cardiac muscle cells. , 1998, Biophysical journal.

[168]  F. Di Lisa,et al.  The role of mitochondria in the salvage and the injury of the ischemic myocardium. , 1998, Biochimica et biophysica acta.

[169]  S. Javadov,et al.  Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. , 1998, Biochimica et biophysica acta.

[170]  W. Kunz,et al.  Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo , 1998 .

[171]  P. Maher,et al.  The Regulation of Reactive Oxygen Species Production during Programmed Cell Death , 1998, The Journal of cell biology.

[172]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[173]  Dean P. Jones,et al.  Superoxide in Apoptosis , 1998, The Journal of Biological Chemistry.

[174]  W. Schubert,et al.  Functional Imaging of Mitochondria in Saponin-permeabilized Mice Muscle Fibers , 1998, The Journal of cell biology.

[175]  E. Marbán,et al.  Subcellular metabolic transients and mitochondrial redox waves in heart cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[176]  L. Szweda,et al.  Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[177]  T. Slabe,et al.  Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. , 1997, The American journal of physiology.

[178]  H. Takenaka,et al.  Effect of prolonged hypothermic ischemia and reperfusion on oxygen consumption and total mechanical energy in rat myocardium: participation of mitochondrial oxidative phosphorylation. , 1997, Transplantation.

[179]  J. Simoneau,et al.  Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. , 1997, Journal of applied physiology.

[180]  M. Chiariello,et al.  Oxygen radicals can induce preconditioning in rabbit hearts. , 1997, Circulation research.

[181]  P. Nicotera,et al.  Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis , 1997, The Journal of experimental medicine.

[182]  Dean P. Jones,et al.  Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked , 1997, Science.

[183]  D. Green,et al.  The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis , 1997, Science.

[184]  T. Pozzan,et al.  A Role for Calcium Influx in the Regulation of Mitochondrial Calcium in Endothelial Cells (*) , 1996, The Journal of Biological Chemistry.

[185]  J. Downey,et al.  Myocardial preconditioning promises to be a novel approach to the treatment of ischemic heart disease. , 1996, Annual review of medicine.

[186]  B. Wieringa,et al.  Muscle Creatine Kinase-deficient Mice , 1995, The Journal of Biological Chemistry.

[187]  Philippe Mateo,et al.  Muscle Creatine Kinase-deficient Mice , 1995, The Journal of Biological Chemistry.

[188]  A. Federico,et al.  Polarographic analyses of subsarcolemmal and intermyofibrillar mitochondria from rat skeletal and cardiac muscle , 1995, Journal of the Neurological Sciences.

[189]  R. Kloner,et al.  Reperfusion injury induces apoptosis in rabbit cardiomyocytes. , 1994, The Journal of clinical investigation.

[190]  A. Kuznetsov,et al.  Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. , 1993, Biochimica et biophysica acta.

[191]  W. Kunz,et al.  Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. , 1993, Biochimica et biophysica acta.

[192]  R. Weisel,et al.  Prolonged hypothermic cardiac storage for transplantation. The effects on myocardial metabolism and mitochondrial function. , 1992, The Journal of thoracic and cardiovascular surgery.

[193]  D. Wallace,et al.  Diseases of the mitochondrial DNA. , 1992, Annual review of biochemistry.

[194]  M. Crompton,et al.  Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. , 1991, Journal of molecular and cellular cardiology.

[195]  M. Zoratti,et al.  The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. , 1991, The Journal of biological chemistry.

[196]  A. Kuznetsov,et al.  Alterations in the creatine kinase system in the myocardium of cardiomyopathic hamsters. , 1989, Biochemical and biophysical research communications.

[197]  S. Javadov,et al.  Quantitative evaluation of relationship between cardiac energy metabolism and post-ischemic recovery of contractile function. , 1989, Journal of molecular and cellular cardiology.

[198]  A. Kuznetsov,et al.  Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. , 1987, Biochimica et biophysica acta.

[199]  R. Jennings,et al.  Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. , 1986, Circulation.

[200]  V A Saks,et al.  Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. , 1985, The Journal of biological chemistry.

[201]  C. Hoppel,et al.  Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. , 1985, Archives of biochemistry and biophysics.

[202]  C. Hoppel,et al.  Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. , 1982, The Journal of biological chemistry.

[203]  R. Narbaitz,et al.  Membrane changes induced by early myocardial ischemia in the dog. , 1980, Canadian journal of biochemistry.

[204]  B. Chance,et al.  Heterogeneity of the Hypoxic State in Perfused Rat Heart , 1977, Circulation research.