Open Rotor Designs for Low Noise and High Efficiency

Building upon the successes of the UDF® program in the 1980’s, open rotor designs for high flight speed efficiency and low community noise have been developed at GE in collaboration with NASA and the FAA. Targeting a narrow body aircraft with 0.78 cruise Mach number, the cost-share program leveraged computational fluid dynamics (CFD), computational aero-acoustics (CAA), and rig scale testing to generate designs that achieved significant noise reductions well beyond what was attained in the 1980’s while substantially retaining cruise performance. This paper presents overall propeller net efficiency and acoustic assessments of GE’s modern open rotor designs based on measured rig data and the progression of the technology from the 1980’s through the present. Also discussed are the effects of aft rotor clipping, inter-rotor spacing, and disk loading. This paper shows how the two-phase design and scale model wind tunnel test program allowed for test results of the first design phase to feed back into the second design phase, resulting in 2–3% improvement in overall propeller net efficiency than the best efficiency design of the 1980’s while nominally achieving 15–17 EPNdB noise margin to Chapter 4 (when projected to full scale for a prescribed aircraft trajectory and installation). Accounting for trades and near term advancements, such a propulsion system is projected to meet the goal of 26% fuel burn reduction relative to CFM56-7B powered narrow body aircraft.Copyright © 2013 by ASME