Ideal secret sharing schemes with multiple secrets

We consider secret sharing schemes which, through an initial issuing of shares to a group of participants, permit a number of different secrets to be protected. Each secret is associated with a (potentially different) access structure and a particular secret can be reconstructed by any group of participants from its associated access structure without the need for further broadcast information. We consider ideal secret sharing schemes in this more general environment. In particular, we classify the collections of access structures that can be combined in such an ideal secret sharing scheme and we provide a general method of construction for such schemes. We also explore the extent to which the results that connect ideal secret sharing schemes to matroids can be appropriately generalized.

[1]  Hideki Imai,et al.  On the Key Predistribution System: A Practical Solution to the Key Distribution Problem , 1987, CRYPTO.

[2]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[3]  Hung-Min Sun,et al.  On Dynamic Threshold Schemes , 1994, Inf. Process. Lett..

[4]  Amos Beimel,et al.  Universally Ideal Secret Sharing Schemes (Preliminary Version) , 1992, CRYPTO.

[5]  Keith M. Martin,et al.  Efficient constructions for one sharing of many secrets , 1996, Australas. J Comb..

[6]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[7]  Rolf Blom,et al.  An Optimal Class of Symmetric Key Generation Systems , 1985, EUROCRYPT.

[8]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[9]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.

[10]  Alfredo De Santis,et al.  Efficient Sharing of Many Secrets , 1993, STACS.

[11]  G. R. Blakley,et al.  Threshold Schemes with Disenrollment , 1992, CRYPTO.

[12]  Moti Yung,et al.  Perfectly Secure Key Distribution for Dynamic Conferences , 1998, Inf. Comput..

[13]  Keith M. Martin,et al.  Multisecret Threshold Schemes , 1994, CRYPTO.

[14]  Gustavus J. Simmons,et al.  An Introduction to Shared Secret and/or Shared Control Schemes and Their ApplicationThis work was performed at Sandia National Laboratories and supported by the U.S. Department of Energy under contract number DEAC0476DPOO789. , 1992 .

[15]  Dominic J. A. Welsh,et al.  Codes and cryptography , 1988 .

[16]  Matthew K. Franklin,et al.  Communication complexity of secure computation (extended abstract) , 1992, STOC '92.

[17]  Carlo Blundo,et al.  Space Requirements for Broadcast Encryption , 1994, EUROCRYPT.

[18]  Giovanni Di Crescenzo,et al.  Multi-Secret Sharing Schemes , 1994, CRYPTO.

[19]  Alfredo De Santis,et al.  Fully Dynamic Secret Sharing Schemes , 1996, Theor. Comput. Sci..

[20]  Keith M. Martin,et al.  Combinatorial models for perfect secret sharing schemes , 1998 .

[21]  Christian Schulze,et al.  Multifunktionale shared secret schemes , 1995 .

[22]  Chi-Sung Laih,et al.  Dynamic Threshold Scheme Based on the Definition of Cross-Product in an N-Dimentional Linear Space , 1989, CRYPTO.

[23]  R. J. McEliece,et al.  On sharing secrets and Reed-Solomon codes , 1981, CACM.

[24]  James G. Oxley,et al.  Matroid theory , 1992 .

[25]  Keith M. Martin,et al.  A Construction for Multisecret Threshold Schemes , 1996, Des. Codes Cryptogr..

[26]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.