Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes

Abstract A streaming potential analyzer has been used to investigate the effect of solution chemistry on the surface charge of four commercial reverse osmosis and nanofiltration membranes. Zeta potentials of these membranes were analyzed for aqueous solutions of various chemical compositions over a pH range of 2 to 9. In the presence of an indifferent electrolyte (NaCl), the isoelectric points of these membranes range from 3.0 to 5.2. The curves of zeta potential versus solution pH for all membranes display a shape characteristic of amphoteric surfaces with acidic and basic functional groups. Results with salts containing divalent ions (CaCl2, Na2SO4, and MgSO4) indicate that divalent cations more readily adsorb to the membrane surface than divalent anions, especially in the higher pH range. Three sources of humic acid, Suwannee River humic acid, peat humic acid, and Aldrich humic acid, were used to investigate the effect of dissolved natural organic matter on membrane surface charge. Other solution chemistries involved in this investigation include an anionic surfactant (sodium dodecyl sulfate) and a cationic surfactant (dodecyltrimethylammonium bromide). Results show that humic substances and surfactants readily adsorb to the membrane surface and markedly influence the membrane surface charge.

[1]  W. Pusch,et al.  Ion Exchange Capacity of Cellulose Acetate Membranes , 1976 .

[2]  Robert A. Berner,et al.  The Global Water Cycle , 1987 .

[3]  J G Hering,et al.  Humic acid complexation of calcium and copper. , 1988, Environmental science & technology.

[4]  Menachem Elimelech,et al.  Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer , 1994 .

[5]  Menachem Elimelech,et al.  Effect of Electrolyte Type on the Electrophoretic Mobility of Polystyrene Latex Colloids , 1990 .

[6]  J. J. Morgan,et al.  Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: Influence of solution chemistry , 1994 .

[7]  A. Pihlajamäki,et al.  Characterization of ultrafiltration membranes by simultaneous streaming potential and flux measurements , 1994 .

[8]  M. Nyström,et al.  Fouling and retention of nanofiltration membranes , 1995 .

[9]  A. Amirbahman,et al.  Transport of humic matter-coated hematite in packed beds , 1993 .

[10]  Mark R. Wiesner,et al.  Mass Transport Considerations for Pressure‐Driven Membrane Processes , 1992 .

[11]  Zollars,et al.  Adsorption of Single Anionic Surfactants on Hydrophobic Surfaces. , 1996, Journal of colloid and interface science.

[12]  M. Douglas LeVan,et al.  Fundamentals of Adsorption , 1996 .

[13]  Barry T. Hart,et al.  Adsorption of natural organic matter onto goethite , 1994 .

[14]  L. Koopal,et al.  Adsorption of ionic surfactants on charged solids. Adsorption models. , 1986 .

[15]  Mark R. Wiesner,et al.  Committee report. Membrane processes in potable water treatment , 1992 .

[16]  C. Causserand,et al.  Study of streaming potentials of clean and fouled ultrafiltration membranes , 1994 .

[17]  R. J. Hunter Zeta potential in colloid science : principles and applications , 1981 .

[18]  N. Turro,et al.  Fluorescence probe studies on the structure of the adsorbed layer of dodecyl sulfate at the alumina—water interface , 1987 .

[19]  C. O'melia Particle—particle interactions in aquatic systems , 1989 .

[20]  M. Khedr,et al.  Selective behaviour of hyperfiltration cellulose acetate membranes: Part II. Streaming potential , 1985 .

[21]  R. Beckett,et al.  The role or organic matter and ionic composition in determining the surface charge of suspended particles in natural waters , 1990 .

[22]  Menachem Elimelech,et al.  Fouling of Reverse Osmosis Membranes by Aluminum Oxide Colloids , 1995 .

[23]  W. Stumm Chemistry of the solid-water interface , 1992 .

[24]  K. A. Hunter,et al.  The surface charge of suspended particles in estuarine and coastal waters , 1979, Nature.

[25]  J. Schurz,et al.  Characterization of polymer surfaces by means of electrokinetic measurements , 1988 .

[26]  W. Pusch,et al.  Electric and electrokinetic transport properties of homogeneous weak ion exchange membranes , 1979 .

[27]  D. Fuerstenau,et al.  CHAPTER 6 – PRINCIPLES OF MINERAL FLOTATION , 1972 .

[28]  R. J. Petersen,et al.  Composite reverse osmosis and nanofiltration membranes , 1993 .

[29]  S. S. Wang,et al.  A critical review of fouling of reverse osmosis membranes , 1981 .

[30]  M. Elimelech,et al.  Particle Deposition onto a Permeable Surface in Laminar Flow , 1995 .

[31]  O. Kedem,et al.  Streaming Potentials During Hyperfiltration , 1971 .

[32]  O. Srivastava,et al.  The stability of hydrophobic sols in the presence of surface active agents , 1969 .

[33]  Charles R. O'Melia,et al.  Natural organic matter and colloidal stability: Models and measurements , 1993 .

[34]  R. Lemlich,et al.  Adsorptive bubble separation techniques , 1972 .

[35]  K. Thorn,et al.  Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry , 1989 .

[36]  D. O. Jordan,et al.  The electrophoretic mobilities of hydrocarbon droplets in water and dilute solutions of ethyl alcohol , 1952 .

[37]  D. Fuerstenau,et al.  Mechanisms of Alkyl Sulfonate Adsorption at the Alumina-Water Interface1 , 1966 .

[38]  E. Tipping,et al.  The adsorption of aquatic humic substances by iron oxides , 1981 .

[39]  S. Nishimura,et al.  AFM studies of amine surfactant hemimicelle structures at the mica-water interface , 1995 .

[40]  Thomas M. Walski,et al.  Identifying Efficient Pump Combinations , 1989 .

[41]  M. Nyström,et al.  Streaming potential as a tool in the characterization of ultrafiltration membranes , 1989 .

[42]  E. Oelkers Organic Acids in Aquatic Ecosystems , 1991 .

[43]  M. Clark,et al.  Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes , 1994 .

[44]  H. Gregor,et al.  Charged gels and membranes , 1976 .

[45]  E. Tipping,et al.  The effects of adsorbed humic substances on the surface charge of goethite (α-FeOOH) in freshwaters , 1982 .

[46]  K. Spiegler,et al.  Polarization at Membrane-Solution Interfaces in Reverse Osmosis (Hyperfiltration) , 1976 .

[47]  Menachem Elimelech,et al.  Particle Deposition and Aggregation: Measurement, Modelling and Simulation , 1995 .

[48]  Awwa Water Desalting Reuse Comm Committee report membrane desalting technologies , 1989 .

[49]  John Olaf Nelson Water audit encourages residents to reduce consumption , 1992 .

[50]  H. Abramson Electrokinetic Phenomena and their Application to Biology and Medicine. , 1934 .

[51]  C. Zukoski,et al.  Adsorption of ionic species to the surface of polystyrene latexes , 1991 .

[52]  J. Lyklema How polymers adsorb and affect colloid stability , 1985 .

[53]  G. J. Fleer,et al.  Polydispersity effects and the interpretation of polymer adsorption isotherms , 1980 .

[54]  T. Healy Principles of Adsorption of Organics at Solid-Solution Interfaces , 1974 .

[55]  F. Fairbrother,et al.  CCCXII.—Studies in electro-endosmosis. Part I , 1924 .