SMOOTH VARYING-COEFFICIENT ESTIMATION AND INFERENCE FOR QUALITATIVE AND QUANTITATIVE DATA

We propose a semiparametric varying-coefficient estimator that admits both qualitative and quantitative covariates along with a test for correct specification of parametric varying-coefficient models. The proposed estimator is exceedingly flexible and has a wide range of potential applications including hierarchical (mixed) settings, small area estimation, etc. A data-driven cross-validatory bandwidth selection method is proposed that can handle both the qualitative and quantitative covariates and that can also handle the presence of potentially irrelevant covariates, each of which can result in finite-sample efficiency gains relative to the conventional frequency (sample-splitting) estimator that is often found in such settings. Theoretical underpinnings including rates of convergence and asymptotic normality are provided. Monte Carlo simulations are undertaken to assess the proposed estimator’s finite-sample performance relative to the conventional semiparametric frequency estimator and to assess the finite-sample performance of the proposed test for correct parametric specification.

[1]  Stefun D. Leigh U-Statistics Theory and Practice , 1992 .

[2]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[3]  Elias Masry,et al.  Multivariate regression estimation local polynomial fitting for time series , 1996 .

[4]  P. Hall Central limit theorem for integrated square error of multivariate nonparametric density estimators , 1984 .

[5]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[6]  Jeffrey S. Racine,et al.  Cross-Validation and the Estimation of Conditional Probability Densities , 2004 .

[7]  Subal C. Kumbhakar,et al.  Productivity in China's high technology industry: Regional heterogeneity and R&D , 2011 .

[8]  S. Kumbhakar,et al.  Does Institutional Quality Affect Firm Performance? Insights from a Semiparametric Approach , 2012, SSRN Electronic Journal.

[9]  Jianxin Zhou,et al.  THE UNIQUENESS OF CROSS-VALIDATION SELECTED SMOOTHING PARAMETERS IN KERNEL ESTIMATION OF NONPARAMETRIC MODELS , 2005, Econometric Theory.

[10]  Herman J. Bierens,et al.  Asymptotic Theory of Integrated Conditional Moment Tests , 1997 .

[11]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[12]  J. Aitchison,et al.  Multivariate binary discrimination by the kernel method , 1976 .

[13]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .

[14]  Chong Gu,et al.  Generalized Nonparametric Mixed-Effect Models: Computation and Smoothing Parameter Selection , 2005 .

[15]  Zongwu Cai,et al.  Functional coefficient instrumental variables models , 2006 .

[16]  Peter F. de Jong,et al.  A central limit theorem for generalized quadratic forms , 1987 .

[17]  Zongwu Cai,et al.  Adaptive varying‐coefficient linear models , 2000 .

[18]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[19]  Jeffrey S. Racine,et al.  A Consistent Model Specification Test with Mixed Discrete and Continuous Data , 2006 .

[20]  W. Härdle,et al.  How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .

[21]  J. Raz,et al.  Semiparametric Stochastic Mixed Models for Longitudinal Data , 1998 .

[22]  A. Ullah,et al.  Functional coefficient estimation with both categorical and continuous data , 2009 .

[23]  P. K. Sen,et al.  Normal Approximations and Asymptotic Expansions. , 1977 .

[24]  Qi Li,et al.  CONSISTENT MODEL SPECIFICATION TESTS , 2000, Econometric Theory.

[25]  Jeffrey S. Racine,et al.  Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors , 2007, The Review of Economics and Statistics.

[26]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[27]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[28]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[29]  Christopher F. Parmeter,et al.  Market power, EU integration and privatization: The case of Romania , 2010 .

[30]  H. Bierens Consistent model specification tests , 1982 .

[31]  Uniform in Bandwidth Consistency of Smooth Varying Coefficient Estimators , 2009 .

[32]  J. MacKinnon,et al.  Bootstrap tests: how many bootstraps? , 2000 .

[33]  Subal C. Kumbhakar,et al.  Estimation of TFP growth: a semiparametric smooth coefficient approach , 2012 .

[34]  W. Fung,et al.  Variance component testing in semiparametric mixed models , 2004 .

[35]  Qi Li,et al.  Consistent Model Specification Tests : Kernel-Based Tests versus Bierens ' ICM Tests , 2008 .

[36]  John Haigh,et al.  Normal Approximations and Asymptotic Expansions , 1977 .

[37]  L. Peeters,et al.  Semiparametric Cost Allocation Estimation , 2011 .

[38]  James Stephen Marron,et al.  Regression smoothing parameters that are not far from their optimum , 1992 .

[39]  Qi Li,et al.  Semiparametric Smooth Coefficient Models , 2002 .