Beyond Perfection: On Relaxations and Superclasses

H a b i l i t a t i o n s s c h r i f t zur Erlangung des akademischen Grades doctor rerum naturalium habilitatus Färbungszahl χ(G) eines Graphen ist jedoch i.a. NP-schwer. Die Cliquen-zahl ω(G) ist eine natürliche untere Schranke für χ(G); für perfekte Graphen G gilt stets Gleichheit (für alle induzierten Untergraphen), im Allgemeinen können die beiden Parameter jedoch beliebig weit auseinander liegen [70]. Eine natürliche Frage ist also, für welche Graphenklassen die Differenz zwi-schen Cliquenzahl ω(G) und Färbungszahl χ(G) unter Kontrolle ist. Wir be-schäftigen uns mit zwei Konzepten, um diese Frage zu beantworten: oberen Schranken für χ(G) als Funktion von ω(G) und dem Imperfektheitsgrad eines Graphen. iii iv Eine Graphenklasse G ist χ-bound mit Bindingfunktion b, falls χ(G ′) ≤ b(ω(G ′)) für alle induzierten Untergraphen G ′ von Graphen G ∈ G gilt [51]. Perfekte Graphen sind genau die Graphen mit Bindingfunktion b(x) = x und Klassen mit linearer Bindingfunktion b(x) = bx + c habenähnlich gute Färbungseigenschaften. Wir untersuchen in Kapitel 2 verschiedene Klassen mit Bindingfunktion b(x) = x + 1. Gerke und McDiarmid führten in [45] alsähnliches Konzept den Imper-fektheitsgrad eines Graphen G ein als imp(G) = max χ f (G, c) ω(G, c) | c : V (G) → N \ {0} wobei χ f (G, c) die fraktionale gewichtete Färbungszahl und ω(G, c) die ge-wichtete Cliquenzahl ist. Jeder perfekte Graph G hat imp(G) = 1 und alle Graphen mit einem kleinen Imperfektheitsgrad können als 'fast per-fekt' angesehen werden. Wir geben für einige Klassen obere Schranken für den Imperfektheitsgrad an, siehe Sektion 5.2. Weiter leiten wir für Klassen mit unbeschränktem Imperfektheitsgrad eine hinreichende Bedingung für die Nichtexistenz von Bindingfunktionen her, siehe Sektion 2.3.

[1]  Levent Tunçel,et al.  Lift-and-project ranks and antiblocker duality , 2005, Oper. Res. Lett..

[2]  Claudio Gentile,et al.  On the Stable Set Polytope of Claw-Free Graphs , 2008, COCOA.

[3]  Annegret Wagler,et al.  Almost all webs are not rank-perfect , 2004, Math. Program..

[4]  Gérard Cornuéjols The Strong Perfect Graph Conjecture , 2002 .

[5]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[6]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[7]  Raffaele Mosca,et al.  On (P5, diamond)-free graphs , 2002, Discret. Math..

[8]  Leslie E. Trotter,et al.  A class of facet producing graphs for vertex packing polyhedra , 1975, Discret. Math..

[9]  William J. Cook,et al.  On cutting-plane proofs in combinatorial optimization , 1989 .

[10]  J. Körner,et al.  Graphs that Split Entropies , 1988, SIAM J. Discret. Math..

[11]  Friedrich Eisenbrand,et al.  Circular Ones Matrices and the Stable Set Polytope of Quasi-Line Graphs , 2005, IPCO.

[12]  Annegret Wagler,et al.  Triangle-free strongly circular-perfect graphs , 2009, Discret. Math..

[13]  Zsolt Tuza,et al.  Perfect couples of graphs , 1992, Comb..

[14]  László Lovász,et al.  Entropy splitting for antiblocking corners and perfect graphs , 1990, Comb..

[15]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[16]  Annegret Wagler,et al.  Antiwebs are rank-perfect , 2004, 4OR.

[17]  Mouloud Boulala,et al.  Polytope des independants d'un graphe serie-parallele , 1979, Discret. Math..

[18]  Medha Dhurandhar Improvement on Brooks' chromatic bound for a class of graphs , 1982, Discret. Math..

[19]  W. Cunningham Polyhedra for Composed Independence Systems , 1982 .

[20]  Colin McDiarmid,et al.  Graph Imperfection , 2001, J. Comb. Theory, Ser. B.

[21]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[22]  Hans Jürgen Prömel,et al.  Almost all Berge Graphs are Perfect , 1992, Comb. Probab. Comput..

[23]  Manfred W. Padberg,et al.  Perfect zero–one matrices , 1974, Math. Program..

[24]  Annegret K. Wagler The Normal Graph Conjecture is True for Circulants , 2006 .

[25]  Xuding Zhu Circular perfect graphs , 2005, J. Graph Theory.

[26]  Leslie E. Trotter,et al.  Graphical properties related to minimal imperfection , 1979, Discret. Math..

[27]  Antonio Sassano,et al.  The Rank Facets of the Stable Set Polytope for Claw-Free Graphs , 1997, J. Comb. Theory, Ser. B.

[28]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[29]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[30]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[31]  Gérard Cornuéjols,et al.  Critical graphs, matchings and tours or a hierarchy of relaxations for the travelling salesman problem , 1983 .

[32]  Annegret Wagler,et al.  On non-rank facets of stable set polytopes of webs with clique number four , 2006, Discret. Appl. Math..

[33]  J. P. Uhry,et al.  Transformations which Preserve Perfectness and H-Perfectness of Graphs , 1982 .

[34]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Gérard Cornuéjols,et al.  A polynomial algorithm for recognizing perfect graphs , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[36]  Vasek Chvátal,et al.  Star-cutsets and perfect graphs , 1985, J. Comb. Theory, Ser. B.

[37]  William R. Pulleyblank,et al.  Formulations for the stable set polytope of a claw-free graph , 1993, IPCO.

[38]  M. Burlet,et al.  Polynomial algorithm to recognize a Meyniel graph , 1984 .

[39]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[40]  A. Tamura,et al.  A revision of Minty's algorithm for finding a maximum weight stable set of a claw-free graph , 2001 .

[41]  Gianpaolo Oriolo,et al.  On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs , 2004, Math. Methods Oper. Res..

[42]  Gianpaolo Oriolo,et al.  Clique family inequalities for the stable set polytope of quasi-line graphs , 2003, Discret. Appl. Math..

[43]  D. R. Fulkerson,et al.  Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..

[44]  M. Padberg Almost integral polyhedra related to certain combinatorial optimization problems , 1976 .

[45]  Annegret Wagler,et al.  On rank-perfect subclasses of near-bipartite graphs , 2005, 4OR.

[46]  Jean-Luc Fouquet,et al.  A Strengthening of Ben Rebea's Lemma , 1993, J. Comb. Theory, Ser. B.

[47]  Jaakob Kind,et al.  Mobilitätsmodelle für zellulare Mobilfunknetze : Produktformen und Blockierung , 2000 .

[48]  Xuding Zhu,et al.  Circular chromatic number: a survey , 2001, Discret. Math..

[49]  Antonio Sassano,et al.  Chair-Free Berge Graphs Are Perfect , 1997, Graphs Comb..

[50]  F. Bruce Shepherd,et al.  Applying Lehman's theorems to packing problems , 1995, Math. Program..

[51]  Annegret Wagler,et al.  Comparing Imperfection Ratio and Imperfection Index for Graph Classes , 2008, RAIRO Oper. Res..

[52]  D. R. Fulkerson,et al.  Anti-blocking polyhedra , 1972 .

[53]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[54]  Friedrich Eisenbrand,et al.  The stable set polytope of quasi-line graphs , 2010, Comb..

[55]  F. B. Shepherd Near-perfect matrices , 1994, Math. Program..

[56]  G. S. GASPARIAN,et al.  Minimal imperfect graphs: A simple approach , 1996, Comb..

[57]  R. Bixby A Composition for Perfect Graphs , 1984 .

[58]  Geir Dahl,et al.  Stable Set Polytopes for a Class of Circulant Graphs , 1999, SIAM J. Optim..

[59]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[60]  Pavol Hell,et al.  A note on the star chromatic number , 1990, J. Graph Theory.

[61]  Annegret Wagler,et al.  A construction for non-rank facets of stable set polytopes of webs , 2003, Eur. J. Comb..

[62]  Alan Tucker,et al.  Critical perfect graphs and perfect 3-chromatic graphs , 1977, J. Comb. Theory, Ser. B.

[63]  K. R. Parthasarathy,et al.  The strong perfect-graph conjecture is true for K1, 3-free graphs , 1976, J. Comb. Theory, Ser. B.

[64]  L. Lovász Normal Hypergraphs and the Weak Perfect Graph Conjecture , 1984 .

[65]  Jørgen Bang-Jensen,et al.  Convex‐round graphs are circular‐perfect , 2002, J. Graph Theory.

[66]  Alan Tucker Coloring perfect (K4 - e)-free graphs , 1987, J. Comb. Theory, Ser. B.

[67]  Bert Gerards,et al.  Matrices with the edmonds—Johnson property , 1986, Comb..

[68]  Bert Gerards,et al.  The Graphs with All Subgraphs T-Perfect , 1998, SIAM J. Discret. Math..

[69]  Annegret Wagler,et al.  On classes of minimal circular-imperfect graphs , 2008, Discret. Appl. Math..

[70]  Leslie E. Trotter,et al.  On stable set polyhedra for K1, 3-free graphs , 1981, J. Comb. Theory, Ser. B.

[71]  Annegret K. Wagler Critical Edges in Perfect Graphs , 2000 .

[72]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[73]  Graciela L. Nasini,et al.  The disjunctive procedure and blocker duality , 2002, Discret. Appl. Math..

[74]  Annegret K. Wagler Constructions for normal graphs and some consequences , 2008, Discret. Appl. Math..

[75]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[76]  Sebastián Ceria,et al.  Lift-and-project cuts and perfect graphs , 2003, Math. Program..

[77]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[78]  Colin McDiarmid,et al.  Graph Imperfection II , 2001, J. Comb. Theory, Ser. B.

[79]  Caterina De Simone,et al.  On the Odd Cycles of Normal Graphs , 1999, Discret. Appl. Math..

[80]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[81]  D. R. Lick,et al.  The Theory and Applications of Graphs. , 1983 .

[82]  A. Vince,et al.  Star chromatic number , 1988, J. Graph Theory.

[83]  J. P. Uhry,et al.  A class of h-perfect graphs , 1984, Discret. Math..

[84]  Annegret K. Wagler Relaxing Perfectness: Which Graphs Are "Almost" Perfect? , 2002, The Sharpest Cut.

[85]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[86]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[87]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[88]  Paul D. Seymour,et al.  Recognizing Berge Graphs , 2005, Comb..

[89]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[90]  Annegret K. Wagler,et al.  On stable set polytopes of circular-perfect graphs , 2005 .