Beyond Perfection: On Relaxations and Superclasses
暂无分享,去创建一个
[1] Levent Tunçel,et al. Lift-and-project ranks and antiblocker duality , 2005, Oper. Res. Lett..
[2] Claudio Gentile,et al. On the Stable Set Polytope of Claw-Free Graphs , 2008, COCOA.
[3] Annegret Wagler,et al. Almost all webs are not rank-perfect , 2004, Math. Program..
[4] Gérard Cornuéjols. The Strong Perfect Graph Conjecture , 2002 .
[5] V. Chvátal. On certain polytopes associated with graphs , 1975 .
[6] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[7] Raffaele Mosca,et al. On (P5, diamond)-free graphs , 2002, Discret. Math..
[8] Leslie E. Trotter,et al. A class of facet producing graphs for vertex packing polyhedra , 1975, Discret. Math..
[9] William J. Cook,et al. On cutting-plane proofs in combinatorial optimization , 1989 .
[10] J. Körner,et al. Graphs that Split Entropies , 1988, SIAM J. Discret. Math..
[11] Friedrich Eisenbrand,et al. Circular Ones Matrices and the Stable Set Polytope of Quasi-Line Graphs , 2005, IPCO.
[12] Annegret Wagler,et al. Triangle-free strongly circular-perfect graphs , 2009, Discret. Math..
[13] Zsolt Tuza,et al. Perfect couples of graphs , 1992, Comb..
[14] László Lovász,et al. Entropy splitting for antiblocking corners and perfect graphs , 1990, Comb..
[15] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[16] Annegret Wagler,et al. Antiwebs are rank-perfect , 2004, 4OR.
[17] Mouloud Boulala,et al. Polytope des independants d'un graphe serie-parallele , 1979, Discret. Math..
[18] Medha Dhurandhar. Improvement on Brooks' chromatic bound for a class of graphs , 1982, Discret. Math..
[19] W. Cunningham. Polyhedra for Composed Independence Systems , 1982 .
[20] Colin McDiarmid,et al. Graph Imperfection , 2001, J. Comb. Theory, Ser. B.
[21] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[22] Hans Jürgen Prömel,et al. Almost all Berge Graphs are Perfect , 1992, Comb. Probab. Comput..
[23] Manfred W. Padberg,et al. Perfect zero–one matrices , 1974, Math. Program..
[24] Annegret K. Wagler. The Normal Graph Conjecture is True for Circulants , 2006 .
[25] Xuding Zhu. Circular perfect graphs , 2005, J. Graph Theory.
[26] Leslie E. Trotter,et al. Graphical properties related to minimal imperfection , 1979, Discret. Math..
[27] Antonio Sassano,et al. The Rank Facets of the Stable Set Polytope for Claw-Free Graphs , 1997, J. Comb. Theory, Ser. B.
[28] Najiba Sbihi,et al. Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..
[29] Claude E. Shannon,et al. The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.
[30] Martin Grötschel,et al. The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..
[31] Gérard Cornuéjols,et al. Critical graphs, matchings and tours or a hierarchy of relaxations for the travelling salesman problem , 1983 .
[32] Annegret Wagler,et al. On non-rank facets of stable set polytopes of webs with clique number four , 2006, Discret. Appl. Math..
[33] J. P. Uhry,et al. Transformations which Preserve Perfectness and H-Perfectness of Graphs , 1982 .
[34] R. L. Brooks. On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.
[35] Gérard Cornuéjols,et al. A polynomial algorithm for recognizing perfect graphs , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[36] Vasek Chvátal,et al. Star-cutsets and perfect graphs , 1985, J. Comb. Theory, Ser. B.
[37] William R. Pulleyblank,et al. Formulations for the stable set polytope of a claw-free graph , 1993, IPCO.
[38] M. Burlet,et al. Polynomial algorithm to recognize a Meyniel graph , 1984 .
[39] A. Gyárfás. Problems from the world surrounding perfect graphs , 1987 .
[40] A. Tamura,et al. A revision of Minty's algorithm for finding a maximum weight stable set of a claw-free graph , 2001 .
[41] Gianpaolo Oriolo,et al. On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs , 2004, Math. Methods Oper. Res..
[42] Gianpaolo Oriolo,et al. Clique family inequalities for the stable set polytope of quasi-line graphs , 2003, Discret. Appl. Math..
[43] D. R. Fulkerson,et al. Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..
[44] M. Padberg. Almost integral polyhedra related to certain combinatorial optimization problems , 1976 .
[45] Annegret Wagler,et al. On rank-perfect subclasses of near-bipartite graphs , 2005, 4OR.
[46] Jean-Luc Fouquet,et al. A Strengthening of Ben Rebea's Lemma , 1993, J. Comb. Theory, Ser. B.
[47] Jaakob Kind,et al. Mobilitätsmodelle für zellulare Mobilfunknetze : Produktformen und Blockierung , 2000 .
[48] Xuding Zhu,et al. Circular chromatic number: a survey , 2001, Discret. Math..
[49] Antonio Sassano,et al. Chair-Free Berge Graphs Are Perfect , 1997, Graphs Comb..
[50] F. Bruce Shepherd,et al. Applying Lehman's theorems to packing problems , 1995, Math. Program..
[51] Annegret Wagler,et al. Comparing Imperfection Ratio and Imperfection Index for Graph Classes , 2008, RAIRO Oper. Res..
[52] D. R. Fulkerson,et al. Anti-blocking polyhedra , 1972 .
[53] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[54] Friedrich Eisenbrand,et al. The stable set polytope of quasi-line graphs , 2010, Comb..
[55] F. B. Shepherd. Near-perfect matrices , 1994, Math. Program..
[56] G. S. GASPARIAN,et al. Minimal imperfect graphs: A simple approach , 1996, Comb..
[57] R. Bixby. A Composition for Perfect Graphs , 1984 .
[58] Geir Dahl,et al. Stable Set Polytopes for a Class of Circulant Graphs , 1999, SIAM J. Optim..
[59] Manfred W. Padberg,et al. On the facial structure of set packing polyhedra , 1973, Math. Program..
[60] Pavol Hell,et al. A note on the star chromatic number , 1990, J. Graph Theory.
[61] Annegret Wagler,et al. A construction for non-rank facets of stable set polytopes of webs , 2003, Eur. J. Comb..
[62] Alan Tucker,et al. Critical perfect graphs and perfect 3-chromatic graphs , 1977, J. Comb. Theory, Ser. B.
[63] K. R. Parthasarathy,et al. The strong perfect-graph conjecture is true for K1, 3-free graphs , 1976, J. Comb. Theory, Ser. B.
[64] L. Lovász. Normal Hypergraphs and the Weak Perfect Graph Conjecture , 1984 .
[65] Jørgen Bang-Jensen,et al. Convex‐round graphs are circular‐perfect , 2002, J. Graph Theory.
[66] Alan Tucker. Coloring perfect (K4 - e)-free graphs , 1987, J. Comb. Theory, Ser. B.
[67] Bert Gerards,et al. Matrices with the edmonds—Johnson property , 1986, Comb..
[68] Bert Gerards,et al. The Graphs with All Subgraphs T-Perfect , 1998, SIAM J. Discret. Math..
[69] Annegret Wagler,et al. On classes of minimal circular-imperfect graphs , 2008, Discret. Appl. Math..
[70] Leslie E. Trotter,et al. On stable set polyhedra for K1, 3-free graphs , 1981, J. Comb. Theory, Ser. B.
[71] Annegret K. Wagler. Critical Edges in Perfect Graphs , 2000 .
[72] László Lovász,et al. Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..
[73] Graciela L. Nasini,et al. The disjunctive procedure and blocker duality , 2002, Discret. Appl. Math..
[74] Annegret K. Wagler. Constructions for normal graphs and some consequences , 2008, Discret. Appl. Math..
[75] George J. Minty,et al. On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.
[76] Sebastián Ceria,et al. Lift-and-project cuts and perfect graphs , 2003, Math. Program..
[77] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[78] Colin McDiarmid,et al. Graph Imperfection II , 2001, J. Comb. Theory, Ser. B.
[79] Caterina De Simone,et al. On the Odd Cycles of Normal Graphs , 1999, Discret. Appl. Math..
[80] Jack Edmonds,et al. Maximum matching and a polyhedron with 0,1-vertices , 1965 .
[81] D. R. Lick,et al. The Theory and Applications of Graphs. , 1983 .
[82] A. Vince,et al. Star chromatic number , 1988, J. Graph Theory.
[83] J. P. Uhry,et al. A class of h-perfect graphs , 1984, Discret. Math..
[84] Annegret K. Wagler. Relaxing Perfectness: Which Graphs Are "Almost" Perfect? , 2002, The Sharpest Cut.
[85] J. Edmonds. Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.
[86] S. E. Markosyan,et al. ω-Perfect graphs , 1990 .
[87] Jan Mycielski. Sur le coloriage des graphs , 1955 .
[88] Paul D. Seymour,et al. Recognizing Berge Graphs , 2005, Comb..
[89] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[90] Annegret K. Wagler,et al. On stable set polytopes of circular-perfect graphs , 2005 .