27 Complementarity of Dark Matter Experiments

Despite being five times as abundant as normal matter in the Universe, the identify of dark matter is unknown. Its existence, however, implies that our inventory of the basic building blocks of nature is incomplete, and uncertainty about its properties clouds attempts to fully understand how the Universe evolved to its present state and how it will evolve in the future. Uncovering the identity of dark matter is therefore a central and grand challenge for both fundamental physics and astronomy. Fortunately, a very promising array of groundbreaking experiments are positioned to transform the field of dark matter in the coming decade. The prospect that dark matter particles might be observed in the near future has drawn many new researchers to the field, which is now characterized by an extraordinary diversity of approaches unified by the common goal of discovering the identity of dark matter.

[1]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[2]  Matthew J. Dolan,et al.  Beyond effective field theory for dark matter searches at the LHC , 2013, 1308.6799.

[3]  Lian-tao Wang,et al.  Dark matter with t -channel mediator: A simple step beyond contact interaction , 2013, 1308.0592.

[4]  Enrico Morgante,et al.  On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel , 2013, 1409.6668.

[5]  T. Tait,et al.  Simplified models for dark matter interacting with quarks , 2013, 1308.2679.

[6]  Spencer Chang,et al.  Effective WIMPs , 2013, 1307.8120.

[7]  T. Tait,et al.  The Pitfalls of Dark Crossings , 2013, 1307.6277.

[8]  A. Myers,et al.  The one-dimensional Lyα forest power spectrum from BOSS , 2013, 1306.5896.

[9]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[10]  A. Drlica-Wagner,et al.  Complementarity and Searches for Dark Matter in the pMSSM , 2013, 1305.6921.

[11]  Edward J. Wollack,et al.  Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report , 2013, 1305.5422.

[12]  P. Lipari,et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .

[13]  D. Whiteson,et al.  Collider searches for dark matter in events with a Z boson and missing energy , 2012, 1212.3352.

[14]  Maxim Perelstein,et al.  Dark matter search at a linear collider: effective operator approach , 2012, 1211.4008.

[15]  JoAnne L. Hewett,et al.  More energy, more searches, but the phenomenological MSSM lives on , 2012, 1211.1981.

[16]  T. Tait,et al.  Searches with mono-leptons , 2012, 1208.4361.

[17]  Astronomy,et al.  Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.

[18]  Astrophysics,et al.  The impact of feedback from galaxy formation on the Lyman α transmitted flux , 2012, 1207.6567.

[19]  C. Grillmair,et al.  THE PAL 5 STAR STREAM GAPS , 2012, 1209.1741.

[20]  J. Hewett,et al.  Higgs sector and fine-tuning in the phenomenological MSSM , 2012, 1206.5800.

[21]  J. Hewett,et al.  The new look pMSSM with neutralino and gravitino LSPs , 2012, The European Physical Journal C.

[22]  Jonathan L. Feng,et al.  A Natural 125 GeV Higgs Boson in the MSSM from Focus Point Supersymmetry with A-Terms , 2012, 1205.2372.

[23]  X. Ji,et al.  Light dark matter and Z′ dark force at colliders , 2012, 1202.2894.

[24]  M. Vogelsberger,et al.  Subhaloes in self-interacting galactic dark matter haloes , 2012, 1201.5892.

[25]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[26]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[27]  T. Tait,et al.  LHC bounds on interactions of dark matter , 2011, 1108.1196.

[28]  J. Hewett,et al.  Supersymmetry Without Prejudice at the 7 TeV LHC , 2011, 1103.1697.

[29]  P. Fox,et al.  LEP Shines Light on Dark Matter , 2011, 1103.0240.

[30]  Hai-Bo Yu,et al.  Constraints on Light Majorana dark Matter from Colliders , 2010, 1005.1286.

[31]  T. Tait,et al.  Constraints on dark matter from colliders , 2010, 1008.1783.

[32]  Patrick J. Fox,et al.  The Tevatron at the frontier of dark matter direct detection , 2010, 1005.3797.

[33]  Edward W. Kolb,et al.  Maverick dark matter at colliders , 2010, 1002.4137.

[34]  Douglas P. Finkbeiner,et al.  CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch , 2009, 0906.1197.

[35]  Josh Simon,et al.  Strong gravitational lensing probes of the particle nature of dark matter , 2009 .

[36]  Pasquale Dario Serpico,et al.  Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.

[37]  Maria Beltran,et al.  Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics , 2008, 0808.3384.

[38]  Shouleh Nikzad,et al.  The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA) , 2008, Astronomical Telescopes + Instrumentation.

[39]  Zheng Zheng,et al.  Constraints on radiative dark-matter decay from the cosmic microwave background , 2007, 0704.2444.

[40]  Anthony H. Gonzalez,et al.  Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 , 2007, 0704.0261.

[41]  G. Moultaka,et al.  SuSpect: A Fortran code for the Supersymmetric and Higgs particle spectrum in the MSSM , 2002, Comput. Phys. Commun..

[42]  A. Kusenko Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.

[43]  Z. Si,et al.  Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background , 2006, astro-ph/0603425.

[44]  Caltech,et al.  Impact of dark matter decays and annihilations on reionization , 2006, astro-ph/0603237.

[45]  B. C. Allanach,et al.  SOFTSUSY: A program for calculating supersymmetric spectra☆ , 2001, hep-ph/0104145.

[46]  I. Hinchliffe,et al.  RESEARCH NOTES FROM COLLABORATIONS: Signals of models with large extra dimensions in ATLAS , 2001 .

[47]  Jonathan L. Feng,et al.  Focus point supersymmetry: Proton decay, flavor and CP violation, and the Higgs boson mass , 2000, hep-ph/0011356.

[48]  Jonathan L. Feng,et al.  Prospects for indirect detection of neutralino dark matter , 2000, astro-ph/0008115.

[49]  G. Raffelt Astrophysics probes of particle physics , 2000 .

[50]  Jonathan L. Feng,et al.  Neutralino dark matter in focus point supersymmetry , 2000, hep-ph/0004043.

[51]  Focus points and naturalness in supersymmetry , 1999, hep-ph/9909334.

[52]  Multi-TeV scalars are natural in minimal supergravity , 1999, Physical review letters.

[53]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[54]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.