Lower bounds for integration and recovery in L2

Function values are, in some sense, “almost as good” as general linear information for L2-approximation (optimal recovery, data assimilation) of functions from a reproducing kernel Hilbert space. This was recently proved by new upper bounds on the sampling numbers under the assumption that the singular values of the embedding of this Hilbert space into L2 are square-summable. Here we mainly prove new lower bounds. In particular we prove that the sampling numbers behave worse than the approximation numbers for Sobolev spaces with small smoothness. Hence there can be a logarithmic gap also in the case where the singular numbers of the embedding are square-summable. We first prove new lower bounds for the integration problem, again for rather classical Sobolev spaces of periodic univariate functions. Institut für Analysis, Johannes Kepler Universität Linz, Altenbergerstrasse 69, 4040 Linz, Austria, Email: aicke.hinrichs@jku.at, david.krieg@jku.at; the research of these authors is supported by the Austrian Science Fund (FWF) Project F5513-N26, which is a part of the Special Research Program Quasi-Monte Carlo Methods: Theory and Applications. Mathematisches Institut, FSU Jena, Ernst-Abbe-Platz 2, 07740 Jena, Germany, Email: erich.novak@uni-jena.de. Dept. of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, 12000 Prague, Czech Republic, Email: jan.vybiral@fjfi.cvut.cz; the research of this author was supported by the European Regional Development Fund-Project “Center for Advanced Applied Science” (No. CZ.02.1.01/0.0/0.0/16 019/0000778).

[1]  Toni Volkmer,et al.  Worst case recovery guarantees for least squares approximation using random samples , 2019, ArXiv.

[2]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[3]  Erich Novak,et al.  Linear information versus function evaluations for L2-approximation , 2008, J. Approx. Theory.

[4]  Vladimir N. Temlyakov,et al.  On optimal recovery in L2 , 2021, J. Complex..

[5]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[6]  Jan Vybíral A variant of Schur's product theorem and its applications , 2019, ArXiv.

[7]  Henryk Wozniakowski,et al.  On the power of standard information for multivariate approximation in the worst case setting , 2009, J. Approx. Theory.

[8]  Erich Novak,et al.  Random sections of ellipsoids and the power of random information , 2019, Transactions of the American Mathematical Society.

[9]  S. Tikhonov,et al.  Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations , 2018, Memoirs of the American Mathematical Society.

[10]  A. Cohen,et al.  Optimal weighted least-squares methods , 2016, 1608.00512.

[11]  Susana D. Moura,et al.  Function spaces of generalised smoothness , 2001 .

[12]  David Krieg Optimal Monte Carlo Methods for $$L^2$$L2-Approximation , 2017, 1705.04567.

[13]  Mario Ullrich,et al.  Function values are enough for L2-approximation: Part II , 2020, J. Complex..

[14]  Henryk Wozniakowski,et al.  Tractability of multivariate problems for standard and linear information in the worst case setting: Part I , 2015, J. Approx. Theory.

[15]  Erich Novak,et al.  Lower Bounds for the Error of Quadrature Formulas for Hilbert Spaces , 2020, J. Complex..

[16]  H. Triebel,et al.  Spectral theory for isotropic fractal drums , 1998 .

[17]  Henryk Wozniakowski,et al.  On the Power of Standard Information for Weighted Approximation , 2001, Found. Comput. Math..

[18]  Henryk Wozniakowski,et al.  The power of standard information for multivariate approximation in the randomized setting , 2006, Math. Comput..

[19]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[20]  V. Temlyakov,et al.  Bounds on Kolmogorov widths and sampling recovery for classes with small mixed smoothness , 2020, J. Complex..