暂无分享,去创建一个
[1] Toni Volkmer,et al. Worst case recovery guarantees for least squares approximation using random samples , 2019, ArXiv.
[2] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[3] Erich Novak,et al. Linear information versus function evaluations for L2-approximation , 2008, J. Approx. Theory.
[4] Vladimir N. Temlyakov,et al. On optimal recovery in L2 , 2021, J. Complex..
[5] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[6] Jan Vybíral. A variant of Schur's product theorem and its applications , 2019, ArXiv.
[7] Henryk Wozniakowski,et al. On the power of standard information for multivariate approximation in the worst case setting , 2009, J. Approx. Theory.
[8] Erich Novak,et al. Random sections of ellipsoids and the power of random information , 2019, Transactions of the American Mathematical Society.
[9] S. Tikhonov,et al. Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations , 2018, Memoirs of the American Mathematical Society.
[10] A. Cohen,et al. Optimal weighted least-squares methods , 2016, 1608.00512.
[11] Susana D. Moura,et al. Function spaces of generalised smoothness , 2001 .
[12] David Krieg. Optimal Monte Carlo Methods for $$L^2$$L2-Approximation , 2017, 1705.04567.
[13] Mario Ullrich,et al. Function values are enough for L2-approximation: Part II , 2020, J. Complex..
[14] Henryk Wozniakowski,et al. Tractability of multivariate problems for standard and linear information in the worst case setting: Part I , 2015, J. Approx. Theory.
[15] Erich Novak,et al. Lower Bounds for the Error of Quadrature Formulas for Hilbert Spaces , 2020, J. Complex..
[16] H. Triebel,et al. Spectral theory for isotropic fractal drums , 1998 .
[17] Henryk Wozniakowski,et al. On the Power of Standard Information for Weighted Approximation , 2001, Found. Comput. Math..
[18] Henryk Wozniakowski,et al. The power of standard information for multivariate approximation in the randomized setting , 2006, Math. Comput..
[19] P. Levy. Théorie de l'addition des variables aléatoires , 1955 .
[20] V. Temlyakov,et al. Bounds on Kolmogorov widths and sampling recovery for classes with small mixed smoothness , 2020, J. Complex..