Convex relaxation approach to the identification of the Wiener-Hammerstein model

In this paper, an input/output system identification technique for the Wiener-Hammerstein model and its feedback extension is proposed. In the proposed framework, the identification of the nonlinearity is non-parametric. The identification problem can be formulated as a non-convex quadratic program (QP). A convex semidefinite programming (SDP) relaxation is then formulated and solved to obtain a sub-optimal solution to the original non-convex QP. The convex relaxation turns out to be tight in most cases. Combined with the use of local search, high quality solutions to the Wiener-Hammerstein identification can frequently be found. As an application example, randomly generated Wiener-Hammerstein models are identified.

[1]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[2]  Stephen P. Boyd,et al.  Set-membership identification of systems with parametric and nonparametric uncertainty , 1992 .

[3]  Lennart Ljung,et al.  Identification of Wiener systems with monotonous nonlinearity , 2007 .

[4]  Lennart Ljung,et al.  Maximum likelihood identification of Wiener models , 2008, Autom..

[5]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[6]  Keith R. Godfrey,et al.  Identification of Wiener-Hammerstein models using linear interpolation in the frequency domain (LIFRED) , 2002, IEEE Trans. Instrum. Meas..

[7]  Roy S. Smith Model validation for uncertain systems , 1990 .

[8]  Roy S. Smith,et al.  Model validation: a connection between robust control and identification , 1992 .

[9]  Martin Kozek,et al.  Block-oriented identification of Hammerstein/Wiener-models using the RLS-algorithm , 2007 .

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  Geir E. Dullerud,et al.  Modeling and validation of nonlinear feedback systems , 1998, Robustness in Identification and Control.

[12]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[13]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[14]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[15]  Sundeep Rangan,et al.  Model validation for dynamically uncertain systems , 1997 .

[16]  Stephen P. Boyd,et al.  Rank minimization and applications in system theory , 2004, Proceedings of the 2004 American Control Conference.

[17]  Kin Cheong Sou,et al.  Convex optimization methods for model reduction , 2008 .

[18]  Hidenori Kimura,et al.  Time domain identification for robust control , 1993 .

[19]  K. Poolla,et al.  Identification of Nonlinear Maps in Interconnected Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[21]  Lieven Vandenberghe,et al.  Convex optimization problems involving finite autocorrelation sequences , 2002, Math. Program..

[22]  Roy S. Smith,et al.  Continuous-time control model validation using finite experimental data , 1996, IEEE Trans. Autom. Control..

[23]  Roy S. Smith,et al.  A generalization of the structured singular value and its application to model validation , 1998, IEEE Trans. Autom. Control..

[24]  Pramod Khargonekar,et al.  A Time-Domain Approach to Model Validation , 1992, 1992 American Control Conference.

[25]  Zygmunt Hasiewicz,et al.  On Nonparametric Identification of Wiener Systems , 2007, IEEE Transactions on Signal Processing.

[26]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[27]  Stephen P. Boyd,et al.  Identification of Systems with Parametric and Nonparametric Uncertainty , 1990, 1990 American Control Conference.

[28]  Lennart Ljung,et al.  IDENTIFICATION OF WIENER SYSTEM WITH MONOTONOUS NONLINEARITY , 2006 .