Recovery of quantum-entanglement after encountering an obstruction

Bessel-Gaussian (BG) modes possess unique characteristics that have been exploited in the classical world and which may also o er advantages over other modes in the quantum regime. We use the reconstruction property of BG modes to recover the degree of entanglement of our quantum state after encountering an obstruction. For BG modes, there exists a minimum distance behind an obstruction before reconstruction of the mode occurs. By moving the obstruction along the path of propagation of the entangled photon pairs, we quantitatively show a increase in the degree of entanglement as the obstruction moved beyond that minimum distance.

[1]  M Ritsch-Marte,et al.  Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. , 2009, Optics express.

[2]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[3]  K. Dholakia,et al.  Bessel beams: Diffraction in a new light , 2005 .

[4]  F. Gori,et al.  Bessel-Gauss beams , 1987 .

[5]  Stephen M. Barnett,et al.  Precise quantum tomography of photon pairs with entangled orbital angular momentum , 2009 .

[6]  Andrew Forbes,et al.  Entangled Bessel beams , 2012, Optics & Photonics - Optical Engineering + Applications.

[7]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[8]  K. Dholakia,et al.  Interfering Bessel beams for optical micromanipulation. , 2003, Optics letters.

[9]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[10]  A. Friberg,et al.  Holographic generation of diffraction-free beams. , 1988, Applied optics.

[11]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[12]  A. Forbes,et al.  A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles , 2009 .

[13]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[14]  A. Forbes,et al.  Orbital-angular-momentum entanglement in turbulence , 2013, 1306.6495.

[15]  Julia M Craven,et al.  Nondiffracting random intensity patterns. , 2007, Optics letters.