SCHWARZIAN DERIVATIVES AND FLOWS OF SURFACES
暂无分享,去创建一个
[1] E. Musso,et al. Special Isothermic Surfaces and Solitons , 2001, math/0108170.
[2] F. Burstall. Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems , 2000, math/0003096.
[3] B. Konopelchenko,et al. Induced Surfaces and Their Integrable Dynamics Ii. Generalized Weierstrass Representations in 4‐d Spaces and Deformations via Ds Hierarchy , 1998, math/9810138.
[4] B. Konopelchenko. Weierstrass Representations for Surfaces in 4D Spaces and Their Integrable Deformations via DS Hierarchy , 1998, math/9807129.
[5] D. Calderbank. MOBIUS STRUCTURES AND TWO DIMENSIONAL EINSTEIN-WEYL GEOMETRY , 1998 .
[6] Boris Konopelchenko,et al. Induced Surfaces and Their Integrable Dynamics , 1996 .
[7] A. Bobenko,et al. The Painlevé III equation and the Iwasawa decomposition , 1995 .
[8] I. Taimanov. Modified Novikov--Veselov equation and differential geometry of surfaces , 1995, dg-ga/9511005.
[9] B. Konopelchenko,et al. Generalized Weierstrass formulae, soliton equations and Willmore surfaces. I. Tori of revolution and the mKdV equation , 1995, dg-ga/9506011.
[10] U. Pinkall. Hamiltonian flows on the space of star-shaped curves , 1995 .
[11] U. Pinkall,et al. Constant mean curvature planes with inner rotational symmetry in Euclidean 3-space , 1994 .
[12] B. Smyth. A GENERALIZATION OF A THEOREM OF DELAUNAY ON CONSTANT MEAN CURVATURE SURFACES , 1993 .
[13] G. Segal. The geometry of the KdV equation , 1991 .
[14] Ulrich Pinkall,et al. On the classification of constant mean curvature tori , 1989 .
[15] D. Mumford. Tata Lectures on Theta I , 1982 .
[16] H. Lawson,et al. Complete Minimal Surfaces in S 3 , 1970 .
[17] L. Bianchi. Complementi alle ricerche sulle superficie isoterme , 1906 .
[18] Luigi Bianchi,et al. Ricerche sulle superficie isoterme e sulla deformazione delle quadriche , 1905 .
[19] P. Calapso. Sulla superficie a linee di curvatura isoterme , 1903 .
[20] G. Darboux,et al. Sur les surfaces isothermiques , 1899 .
[21] G. Darboux. Leçons sur la théorie générale des surfaces , 1887 .