SCHWARZIAN DERIVATIVES AND FLOWS OF SURFACES

This paper goes some way in explaining how to construct an integrable hierarchy of flows on the space of conformally immersed tori in n-space. These flows have first occured in mathematical physics -- the Novikov-Veselov and Davey-Stewartson hierarchies -- as kernel dimension preserving deformations of the Dirac operator. Later, using spinorial representations of surfaces, the same flows were interpreted as deformations of surfaces in 3- and 4-space preserving the Willmore energy. This last property suggest that the correct geometric setting for this theory is Moebius invariant surface geometry. We develop this view point in the first part of the paper where we derive the fundamental invariants -- the Schwarzian derivative, the Hopf differential and a normal connection -- of a conformal immersion into n-space together with their integrability equations. To demonstrate the effectivness of our approach we discuss and prove a variety of old and new results from conformal surface theory. In the the second part of the paper we derive the Novikov-Veselov and Davey-Stewartson flows on conformally immersed tori by Moebius invariant geometric deformations. We point out the analogy to a similar derivation of the KdV hierarchy as flows on Schwarzian's of meromorphic functions. Special surface classes, e.g. Willmore surfaces and isothermic surfaces, are preserved by the flows.

[1]  E. Musso,et al.  Special Isothermic Surfaces and Solitons , 2001, math/0108170.

[2]  F. Burstall Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems , 2000, math/0003096.

[3]  B. Konopelchenko,et al.  Induced Surfaces and Their Integrable Dynamics Ii. Generalized Weierstrass Representations in 4‐d Spaces and Deformations via Ds Hierarchy , 1998, math/9810138.

[4]  B. Konopelchenko Weierstrass Representations for Surfaces in 4D Spaces and Their Integrable Deformations via DS Hierarchy , 1998, math/9807129.

[5]  D. Calderbank MOBIUS STRUCTURES AND TWO DIMENSIONAL EINSTEIN-WEYL GEOMETRY , 1998 .

[6]  Boris Konopelchenko,et al.  Induced Surfaces and Their Integrable Dynamics , 1996 .

[7]  A. Bobenko,et al.  The Painlevé III equation and the Iwasawa decomposition , 1995 .

[8]  I. Taimanov Modified Novikov--Veselov equation and differential geometry of surfaces , 1995, dg-ga/9511005.

[9]  B. Konopelchenko,et al.  Generalized Weierstrass formulae, soliton equations and Willmore surfaces. I. Tori of revolution and the mKdV equation , 1995, dg-ga/9506011.

[10]  U. Pinkall Hamiltonian flows on the space of star-shaped curves , 1995 .

[11]  U. Pinkall,et al.  Constant mean curvature planes with inner rotational symmetry in Euclidean 3-space , 1994 .

[12]  B. Smyth A GENERALIZATION OF A THEOREM OF DELAUNAY ON CONSTANT MEAN CURVATURE SURFACES , 1993 .

[13]  G. Segal The geometry of the KdV equation , 1991 .

[14]  Ulrich Pinkall,et al.  On the classification of constant mean curvature tori , 1989 .

[15]  D. Mumford Tata Lectures on Theta I , 1982 .

[16]  H. Lawson,et al.  Complete Minimal Surfaces in S 3 , 1970 .

[17]  L. Bianchi Complementi alle ricerche sulle superficie isoterme , 1906 .

[18]  Luigi Bianchi,et al.  Ricerche sulle superficie isoterme e sulla deformazione delle quadriche , 1905 .

[19]  P. Calapso Sulla superficie a linee di curvatura isoterme , 1903 .

[20]  G. Darboux,et al.  Sur les surfaces isothermiques , 1899 .

[21]  G. Darboux Leçons sur la théorie générale des surfaces , 1887 .