Degenerate Turán Problems for Hereditary Properties

Let $H$ be a graph and $t\geq s\geq 2$ be integers. We prove that if $G$ is an $n$-vertex graph with no copy of $H$ and no induced copy of $K_{s,t}$, then $\lambda(G) = O\left(n^{1-1/s}\right)$ where $\lambda(G)$ is the spectral radius of the adjacency matrix of $G$. Our results are motivated by results of Babai, Guiduli, and Nikiforov bounding the maximum spectral radius of a graph with no copy (not necessarily induced) of $K_{s,t}$.

[1]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[2]  Vladimir Nikiforov,et al.  Some Extremal Problems for Hereditary Properties of Graphs , 2013, Electron. J. Comb..

[3]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[4]  Hao Li,et al.  The Maximum Number of Triangles in C2k+1-Free Graphs , 2012, Combinatorics, Probability and Computing.

[5]  László Babai,et al.  Spectral Extrema for Graphs: The Zarankiewicz Problem , 2009, Electron. J. Comb..

[6]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[7]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[8]  Michael Tait,et al.  Induced Turán Numbers , 2016, Combinatorics, Probability and Computing.

[9]  T. D. Parsons The Ramsey numbers r(Pm, Kn) , 1973, Discret. Math..

[10]  V. Nikiforov A contribution to the Zarankiewicz problem , 2009, 0903.5350.

[11]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[12]  Zoltán Füredi,et al.  An Upper Bound on Zarankiewicz' Problem , 1996, Combinatorics, Probability and Computing.