Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition

Abstract. In the last few years, several ground-based and airborne field campaigns have allowed the exploration of the properties and impacts of mineral dust in western Africa, one of the major emission and transport areas worldwide. In this paper, we explore the synthesis of these observations to provide a large-scale quantitative view of the mineralogical composition and its variability according to source region and time after transport. This work reveals that mineral dust in western Africa is a mixture of clays, quartz, iron and titanium oxides, representing at least 92% of the dust mass. Calcite ranged between 0.3 and 8.4% of the dust mass, depending on the origin. Our data do not show a systematic dependence of the dust mineralogical composition on origin; this is to be the case as, in most of the instances, the data represent the composition of the atmospheric burden after 1–2 days after emission, when air masses mix and give rise to a more uniform dust load. This has implications for the representation of the mineral dust composition in regional and global circulation models and in satellite retrievals. Iron oxides account for 58 ± 7% of the mass of elemental Fe and for between 2 and 5% of the dust mass. Most of them are composed of goethite, representing between 52 and 78% of the iron oxide mass. We estimate that titanium oxides account for 1–2% of the dust mass, depending on whether the dust is of Saharan or Sahelian origin. The mineralogical composition is a critical parameter for estimating the radiative and biogeochemical impact of mineral dust. The results regarding dust composition have been used to estimate the optical properties as well as the iron fractional solubility of Saharan and Sahelian dust. Data presented in this paper are provided in numerical form upon email request while they are being turned into a public database, the Dust-Mapped Archived Properties (DUST-MAP), which is an open repository for compositional data from other source regions in Africa and worldwide.

[1]  P. Formenti,et al.  Dominance of goethite over hematite in iron oxides of mineral dust from Western Africa: Quantitative partitioning by X‐ray absorption spectroscopy , 2014 .

[2]  T. Clarmann Smoothing error pitfalls , 2014 .

[3]  M. Morlighem,et al.  Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years , 2014 .

[4]  J. Smerdon,et al.  Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance , 2014 .

[5]  J. Seinfeld,et al.  Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol , 2014 .

[6]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[7]  Y. Balkanski,et al.  A new data set of soil mineralogy for dust-cycle modeling , 2013 .

[8]  Steven Dobbie,et al.  The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds , 2013, Nature.

[9]  K. Su,et al.  A review of microbial redox interactions with structural Fe in clay minerals , 2013, Clay Minerals.

[10]  K. Desboeufs,et al.  Effect of atmospheric organic complexation on iron-bearing dust solubility , 2013 .

[11]  V. Grassian,et al.  Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures , 2012 .

[12]  Ming Zhao,et al.  Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products , 2012 .

[13]  Kerstin Schepanski,et al.  Comparison of satellite based observations of Saharan dust source areas , 2012 .

[14]  P. Sedwick,et al.  Fractional solubility of aerosol iron: Synthesis of a global-scale data set , 2012 .

[15]  T. Holzer-Popp,et al.  Desert dust observation from space – Application of measured mineral component infrared extinction spectra , 2012 .

[16]  S. Nickovic,et al.  Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling , 2012 .

[17]  A. Dai Drought under global warming: a review , 2011 .

[18]  N. Mahowald Aerosol Indirect Effect on Biogeochemical Cycles and Climate , 2011, Science.

[19]  K. Desboeufs,et al.  Variability of dust iron solubility in atmospheric waters: Investigation of the role of oxalate organic complexation , 2011 .

[20]  Martin Ebert,et al.  Recent progress in understanding physical and chemical properties of African and Asian mineral dust , 2011 .

[21]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .

[22]  Noël Grand,et al.  Airborne observations of mineral dust over western Africa in the summer Monsoon season: spatial and vertical variability of physico-chemical and optical properties , 2011 .

[23]  P. Formenti,et al.  Physico‐chemical and optical properties of Sahelian and Saharan mineral dust: in situ measurements during the GERBILS campaign , 2011 .

[24]  Sundar A. Christopher,et al.  Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign , 2011 .

[25]  G. Mann,et al.  Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing , 2011 .

[26]  B. Marticorena,et al.  Impact of very low crop residues cover on wind erosion in the Sahel , 2011 .

[27]  T. Holzer-Popp,et al.  Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI , 2011 .

[28]  Soon-Chang Yoon,et al.  Dust cycle: An emerging core theme in Earth system science , 2011 .

[29]  Albert Ansmann,et al.  Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: what have we learned? , 2011 .

[30]  M. Rossi Evaluated kinetic and photochemical data for atmospheric chemistry , 2010 .

[31]  B. Marticorena,et al.  Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect , 2010 .

[32]  M. I. Mead,et al.  Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA , 2010 .

[33]  S. Martin,et al.  Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study , 2010 .

[34]  Olga V. Kalashnikova,et al.  A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR , 2010 .

[35]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[36]  P. Formenti,et al.  Self‐attenuation artifacts and correction factors of light element measurements by X‐ray analysis: Implication for mineral dust composition studies , 2010 .

[37]  P. Durand,et al.  Seasonal evolution of boundary‐layer turbulence measured by aircraft during the AMMA 2006 Special Observation Period , 2010 .

[38]  J. Haywood,et al.  The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region , 2010 .

[39]  G. Rossman,et al.  Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases , 2009 .

[40]  Paola Formenti,et al.  Using aircraft measurements to determine the refractive index of Saharan dust during the DODO Experiments , 2009 .

[41]  Ilan Koren,et al.  Patterns of North African dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data , 2009 .

[42]  Lars Klüser,et al.  Remote sensing of mineral dust over land with MSG infrared channels: A new Bitemporal Mineral Dust Index , 2009 .

[43]  Andreas Macke,et al.  Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models , 2009 .

[44]  A. Schroth,et al.  Iron solubility driven by speciation in dust sources to the ocean , 2009 .

[45]  Stephane C. Alfaro,et al.  Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. , 2009 .

[46]  N. Drake,et al.  Deflation in the dustiest place on Earth : The Bodélé Depression, Chad , 2009 .

[47]  T. Müller,et al.  Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1 , 2009 .

[48]  J. Heintzenberg The SAMUM-1 experiment over Southern Morocco: overview and introduction , 2009 .

[49]  A. Wiedensohler,et al.  Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006 , 2009 .

[50]  P. Formenti,et al.  Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning , 2008 .

[51]  J. Haywood,et al.  Aircraft measurements of biomass burning aerosol over West Africa during DABEX , 2008 .

[52]  Paola Formenti,et al.  AMMA dust experiment: An overview of measurements performed during the dry season special observation period (SOP0) at the Banizoumbou (Niger) supersite , 2008 .

[53]  Jacques Pelon,et al.  The 7–13 March 2006 dust storm over West Africa: Generation, transport, and vertical stratification , 2008 .

[54]  Hugh Coe,et al.  Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns , 2008 .

[55]  Gerard Capes,et al.  Overview of the Dust and Biomass‐burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period‐0 , 2008 .

[56]  F. Lázaro,et al.  The speciation of iron in desert dust collected in Gran Canaria (Canary Islands): Combined chemical, magnetic and optical analysis , 2008 .

[57]  Abdou Ali,et al.  Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006 , 2008 .

[58]  V. Grassian,et al.  Coupled infrared extinction spectra and size distribution measurements for several non-clay components of mineral dust aerosol (quartz, calcite, and dolomite) , 2008 .

[59]  P. Formenti,et al.  Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment , 2008 .

[60]  N. Mahowald,et al.  Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database , 2008 .

[61]  Corinna Hoose,et al.  The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds , 2008 .

[62]  K. Desboeufs,et al.  Mineralogy as a critical factor of dust iron solubility , 2008 .

[63]  V. Grassian,et al.  Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies , 2008 .

[64]  Y. Balkanski,et al.  Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations , 2008 .

[65]  G. Jeong Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils , 2008 .

[66]  V. Grassian,et al.  Coupled infrared extinction and size distribution measurements for several clay components of mineral dust aerosol , 2008 .

[67]  Timothy D. Glotch,et al.  Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals , 2007 .

[68]  V. Grassian,et al.  Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: Broadband IR-UV extinction spectra , 2007 .

[69]  Diane Eichert,et al.  Iron speciation in soils and soil aggregates by synchrotron‐based X‐ray microspectroscopy (XANES,μ‐XANES) , 2007 .

[70]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[71]  K. Schepanski,et al.  A new Saharan dust source activation frequency map derived from MSG‐SEVIRI IR‐channels , 2007 .

[72]  J. Schauer,et al.  Application of synchrotron radiation for measurement of iron red-ox speciation in atmospherically processed aerosols , 2007 .

[73]  C. Thorncroft,et al.  African Monsoon Multidisciplinary Analysis: An International Research Project and Field Campaign , 2006 .

[74]  Irina N. Sokolik,et al.  Characterization of iron oxides in mineral dust aerosols: Implications for light absorption , 2006 .

[75]  Y. Kaufman,et al.  The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest , 2006 .

[76]  X. Querol,et al.  Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. , 2006, Chemosphere.

[77]  Paul Thomas Griffiths,et al.  Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. , 2006, Chemical communications.

[78]  Y. Balkanski,et al.  Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data , 2006 .

[79]  Renjian Zhang,et al.  Chemical compositions and XANES speciations of Fe, Mn and Zn from aerosols collected in China and Japan during dust events , 2006 .

[80]  G. Christidis Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks—A case study from the Troodos Ophiolite Complex, Cyprus , 2006 .

[81]  Richard Washington,et al.  Dust and the low‐level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005 , 2006 .

[82]  L. Larrabee Strow,et al.  Infrared dust spectral signatures from AIRS , 2006 .

[83]  K. Linge,et al.  Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean , 2006 .

[84]  N. Mahowald,et al.  Simulation of absorbing aerosol indices for African dust , 2005 .

[85]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[86]  Nicolas Clerbaux,et al.  Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003 , 2005 .

[87]  N. Mahowald,et al.  Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications , 2004 .

[88]  S. Carroll,et al.  X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments , 2004 .

[89]  J. Rajot,et al.  Quantification of iron oxides in desert aerosol , 2004 .

[90]  J. Reid,et al.  Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis , 2003 .

[91]  P. Worsfold,et al.  Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean , 2003 .

[92]  Jonathan P. Taylor,et al.  Radiative properties and direct effect of Saharan dust measured by the C‐130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum , 2003 .

[93]  P. Formenti,et al.  Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000 , 2003 .

[94]  R. Washington,et al.  Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations , 2003 .

[95]  Michel Legrand,et al.  Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions , 2002 .

[96]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[97]  N. Middleton,et al.  Saharan dust storms: nature and consequences , 2001 .

[98]  Klaus Willeke,et al.  Aerosol Measurement: Principles, Techniques, and Applications , 2001 .

[99]  J. Rajot Wind blown sediment mass budget of Sahelian village land units in Niger , 2001 .

[100]  J. Penner,et al.  Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust , 2001 .

[101]  R. Losno,et al.  Factors influencing aerosol solubility during cloud processes , 2001 .

[102]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[103]  H. Gilg,et al.  New data on the kaolinite-potassium acetate complex , 1999, Clay Minerals.

[104]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[105]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[106]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[107]  Irina N. Sokolik,et al.  Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths , 1998 .

[108]  L. Gomes,et al.  Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies , 1998 .

[109]  S. Nicholson,et al.  The diurnal and seasonal cycles of wind-borne dust over Africa North of the Equator , 1997 .

[110]  L. Gomes,et al.  An improved procedure for the X-ray diffraction analysis of low-mass atmospheric dust samples , 1996 .

[111]  B. Marticorena,et al.  Assessing the microped size distributions of desert soils erodible by wind , 1996 .

[112]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[113]  Michel Legrand,et al.  Satellite-derived climatology of the Saharan aerosol , 1994, Remote Sensing.

[114]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[115]  E. Murad,et al.  The Mössbauer Spectrum of Illite , 1994, Clay Minerals.

[116]  M. Legrand,et al.  Temporal and spatial variations of the atmospheric dust loading throughout West Africa over the last thirty years , 1994 .

[117]  A. Bedidi,et al.  Light scattering by spherical particles with hematite and goethitelike optical properties: Effect of water impregnation , 1993 .

[118]  G. Christidis,et al.  Compositional Variations in Smectites: Part I. Alteration of Intermediate Volcanic Rocks. A Case Study from Milos Island, Greece , 1993, Clay Minerals.

[119]  R. J. Bell,et al.  Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared , 1993 .

[120]  J. Pollack,et al.  Derivation of midinfrared (5-25 μm) optical constants of some silicates and palagonite , 1991 .

[121]  Eric P. Shettle,et al.  A Wind Dependent Desert Aerosol Model: Radiative Properties , 1988 .

[122]  T. Bates,et al.  Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the Northeast Pacific Ocean , 1988 .

[123]  R. Knacke,et al.  Optical constants of chlorite and serpentine between 2.5 and 50 μm , 1985 .

[124]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[125]  J. Prospero,et al.  Saharan aerosols over the tropical North Atlantic — Mineralogy , 1980 .

[126]  K. Oughstun,et al.  Optical properties of inhomogeneous materials , 1980, IEEE Journal of Quantum Electronics.

[127]  J. Veverka Optical properties of inhomogeneous materials—Applications to geology, astronomy, chemistry, and engineering: Walter G. Egan and Theodore W. Hilgeman. Academic Press, New York, 1979. 235 pp., $27.50 , 1980 .

[128]  A. Herbillon,et al.  Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content , 1980, Clay Minerals.

[129]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[130]  M. Querry,et al.  Complex refractive index of limestone in the visible and infrared. , 1978, Applied optics.

[131]  E. M. Patterson,et al.  Complex Index of Refraction Between 300 and 700 nm for Saharan Aerosols , 1977 .

[132]  T. R. Walker,et al.  CHARACTERISTICS OF AIRBORNE PARTICLES PRODUCED BY WIND EROSION OF SANDY SOIL, HIGH PLAINS OF WEST TEXAS , 1977 .

[133]  Owen B. Toon,et al.  The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride , 1976 .

[134]  C. Brine,et al.  Organic constituents in eolian dust and surface sediments srom northwest Africa , 1976 .

[135]  G. W. Bailey,et al.  Optical Absorption Spectra of Clay Minerals , 1973 .

[136]  J. Syers,et al.  Titanium as Free Oxide and Substituted Forms in Kaolinites and other Soil Minerals , 1970 .

[137]  J. Peterson,et al.  Optical properties of quartz dust particles at infrared wavelengths , 1969 .

[138]  J. Hower,et al.  The mineralogy of illites and mixed-layer illite/montmorillonites , 1966 .

[139]  D. A. Kleinman,et al.  Infrared Lattice Bands of Quartz , 1961 .

[140]  O. P. Mehra,et al.  Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate , 1958 .

[141]  Janina Maier,et al.  Aerosol Measurement Principles Techniques And Applications , 2016 .

[142]  Mathias Kluge,et al.  Principles Of Geochemistry , 2016 .

[143]  R. Grainger,et al.  Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol? , 2014 .

[144]  M. Ebert,et al.  Bulk composition of northern African dust and its source sediments — A compilation , 2013 .

[145]  Anne Klaver Estimation des propriétés optiques des poussières désertiques d'origines saharienne et sahélienne, à proximité de leurs zones sources d'émission, à partir de leurs propriétés physico-chimiques , 2012 .

[146]  Jacques Pelon,et al.  Multi‐platform observations of a springtime case of Bodélé and Sudan dust emission, transport and scavenging over West Africa , 2009 .

[147]  S. Fonti,et al.  Fine hematite particles of Martian interest: absorption spectra and optical constants , 2005 .

[148]  W. Balsam,et al.  Visible spectroscopy of aerosol particles collected on filters: iron-oxide minerals , 2002 .

[149]  S. McLaren,et al.  Linking climate change to land surface change , 2000 .

[150]  M. Legrand,et al.  Dust Variability over Northern Africa and Rainfall in the Sahel , 2000 .

[151]  R. Chester,et al.  The impact of desert dust across the Mediterranean , 1996 .

[152]  G. McTainsh,et al.  Sedimentological Characteristics of Saharan and Australian Dusts , 1996 .

[153]  M. J. P. Cullen,et al.  The unified forecast/climate model , 1993 .

[154]  Rolf E. Hummel,et al.  The Optical Constants , 1993 .

[155]  A. Goudie,et al.  Aeolian Dust and Dust Deposits , 1988 .

[156]  M. Querry,et al.  Optical constants of minerals and other materials from the millimeter to the ultraviolet , 1987 .

[157]  W. Egan,et al.  Optical properties of inhomogeneous materials: applications to geology , 1979 .

[158]  K. Rahn,et al.  Silicon and aluminum in atmospheric aerosols: Crust-air fractionation? , 1976 .

[159]  E. Goldberg,et al.  Airborne dust collected at Barbados , 1967 .

[160]  M. L. Jackson,et al.  Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. , 1960 .