Approches probabilistes et numériques de modèles individus-centrés du chemostat

Dans une premiere partie, nous proposons un nouveau modele de chemostat dans lequel la population bacterienne est representee de maniere individu-centree, structuree en masse, et la dynamique du substrat est modelisee par une equation differentielle ordinaire. Nous obtenons un processus markovien que nous decrivons a l'aide de mesures aleatoires. Nous determinons, sous une certaine renormalisation du processus, un resultat de convergence en loi de ce modele individu-centre hybride vers la solution d'un systeme d'equations integro-differentielles. Dans une seconde partie, nous nous interessons a des modeles de dynamiques adaptatives du chemostat. Nous reprenons le modele individu-centre etudie dans la premiere partie, auquel nous ajoutons un mecanisme de mutation. Sous des hypotheses de mutations rares et de grande population, les resultats asymptotiques obtenus dans la premiere partie nous permettent de reduire l'etude d'une population mutante a un modele de croissance-fragmentation-soutirage en milieu constant. Nous etudions la probabilite d'extinction de cette population mutante. Nous decrivons egalement le modele deterministe associe au modele individu-centre hybride avec mutation et nous comparons les deux approches, stochastique et deterministe; notamment nous demontrons qu'elles menent au meme critere de possibilite d'invasion d'une population mutante dans une population residente.Nous presentons des simulations numeriques illustrant les resultats mathematiques obtenus.

[1]  R. Cooke Real and Complex Analysis , 2011 .

[2]  Viet Chi Tran Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques , 2006 .

[3]  M. Doebeli,et al.  A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms , 2002, Population Ecology.

[4]  M. Jauffret Analysis of a Population Model Structured by the Cells Molecular Content , 2008, 0810.1174.

[5]  B. Perthame,et al.  Evolution of species trait through resource competition , 2012, Journal of mathematical biology.

[6]  Johan Grasman,et al.  Breakdown of a Chemostat Exposed to Stochastic Noise , 2005 .

[7]  Doraiswami Ramkrishna,et al.  Statistical models of cell populations , 1979 .

[8]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[9]  Michael A. Henson,et al.  Dynamic modeling and control of yeast cell populations in continuous biochemical reactors , 2003, Comput. Chem. Eng..

[10]  A. Novick,et al.  Description of the chemostat. , 1950, Science.

[11]  Fabien Campillo,et al.  Weak Convergence of a Mass-Structured Individual-Based Model , 2015 .

[12]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[13]  Sylvie Roelly‐ Coppoletta A criterion of convergence of measure‐valued processes: application to measure branching processes , 1986 .

[14]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.

[15]  Alan Werker,et al.  Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production , 2008 .

[16]  J. Metz,et al.  Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction , 1995 .

[17]  Andreas E. Kyprianou,et al.  Local extinction versus local exponential growth for spatial branching processes , 2004 .

[18]  J. Arino,et al.  Modélisation structurée de la croissance du phytoplancton en chemostat , 2001 .

[19]  Donald L. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems , 2013 .

[20]  Donald A. Dawson,et al.  Measure-valued Markov processes , 1993 .

[21]  L. Imhofa,et al.  Exclusion and persistence in deterministic and stochastic chemostat models , 2005 .

[22]  Vassilios S. Vassiliadis,et al.  Individual‐based and stochastic modeling of cell population dynamics considering substrate dependency , 2009, Biotechnology and bioengineering.

[23]  Nicolas Champagnat A microscopic interpretation for adaptive dynamics trait substitution sequence models , 2005, math/0512063.

[24]  Sylvie Méléard,et al.  Sur les convergences étroite ou vague de processus à valeurs mesures , 1993 .

[25]  K. Crump,et al.  Some stochastic features of bacterial constant growth apparatus. , 1979, Bulletin of mathematical biology.

[26]  R. Ferrière,et al.  Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations , 2005, math/0510453.

[27]  Nicolas Fournier,et al.  A microscopic probabilistic description of a locally regulated population and macroscopic approximations , 2004, math/0503546.

[28]  B. Perthame,et al.  The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. , 2005, Theoretical population biology.

[29]  B. Perthame,et al.  Direct competition results from strong competition for limited resource , 2012, Journal of mathematical biology.

[30]  Irini Angelidaki,et al.  Anaerobic digestion model No. 1 (ADM1) , 2002 .

[31]  Gregory Stephanopoulos,et al.  A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor , 1979 .

[32]  Fabien Campillo,et al.  Stochastic modeling of the chemostat , 2011 .

[33]  Sze-Bi Hsu,et al.  A Mathematical Theory for Single-Nutrient Competition in Continuous Cultures of Micro-Organisms , 1977 .

[34]  T. Egli,et al.  The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics. , 2002, Microbiology.

[35]  V. Tran,et al.  Trait Substitution Sequence process and Canonical Equation for age-structured populations , 2009, Journal of mathematical biology.

[36]  A G Fredrickson,et al.  Multistaged corpuscular models of microbial growth: Monte Carlo simulations. , 1995, Bio Systems.

[37]  Philippe Michel,et al.  Fitness optimization in a cell division model , 2005 .

[38]  Alex Groisman,et al.  A microfluidic chemostat for experiments with bacterial and yeast cells , 2005, Nature Methods.

[39]  R. Nisbet,et al.  How should we define 'fitness' for general ecological scenarios? , 1992, Trends in ecology & evolution.

[40]  J W Wimpenny,et al.  Individual-based modelling of biofilms. , 2001, Microbiology.

[41]  Prodromos Daoutidis,et al.  Dynamics and Control of Cell Populations in Continuous Bioreactors , 2002 .

[42]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[43]  É. Kisdi,et al.  Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree , 2004, Evolutionary Ecology.

[44]  M. Metivier,et al.  Weak convergence of sequences of semimartingales with applications to multitype branching processes , 1986, Advances in Applied Probability.

[45]  Pierre Gabriel,et al.  Eigenelements of a General Aggregation-Fragmentation Model , 2009, 0907.5467.

[46]  V. Tran LARGE POPULATION LIMIT AND TIME BEHAVIOUR OF A STOCHASTIC PARTICLE MODEL DESCRIBING AN AGE-STRUCTURED POPULATION , 2008 .

[47]  Fabien Campillo,et al.  A modeling approach of the chemostat , 2014, 1405.7963.

[48]  Pierre-Emmanuel Jabin,et al.  Adaptation in a stochastic multi-resources chemostat model , 2013, 1302.0552.