An Expanded Mixed Finite Element Method for Space Fractional Darcy Flow in Porous Media

In this paper an expanded mixed formulation is introduced to solve the two dimensional space fractional Darcy flow in porous media. By introducing an auxiliary vector, we derive a new mixed formulation and the well-possedness of the formulation can be established. Then the locally mass-conservative expanded mixed finite element method is applied for the solution. Numerical results are shown to verify the efficiency of the proposed algorithm.

[1]  K. Burrage,et al.  A new fractional finite volume method for solving the fractional diffusion equation , 2014 .

[2]  Hong Wang,et al.  Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation , 2016, J. Comput. Appl. Math..

[3]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[4]  William Rundell,et al.  Variational formulation of problems involving fractional order differential operators , 2013, Math. Comput..

[5]  G. Burton Sobolev Spaces , 2013 .

[6]  Norbert Heuer,et al.  Regularity of the solution to 1-D fractional order diffusion equations , 2016, Math. Comput..

[7]  M. Meerschaert,et al.  Fractional vector calculus for fractional advection–dispersion , 2006 .

[8]  Fanhai Zeng,et al.  Spectral approximations to the fractional integral and derivative , 2012 .

[9]  Guofei Pang,et al.  What is the fractional Laplacian? A comparative review with new results , 2020, J. Comput. Phys..

[10]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[11]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[12]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[13]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[14]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[15]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[16]  Ji-Huan He Approximate analytical solution for seepage flow with fractional derivatives in porous media , 1998 .

[17]  M. Caputo Models of flux in porous media with memory , 2000 .

[18]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[19]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..