Theoretical study of the molecular ordering, paracrystallinity, and charge mobilities of oligomers in different crystalline phases.

Molecular ordering and charge transport have been studied computationally for 22 conjugated oligomers fabricated as crystal or thin-film semiconductors. Molecular dynamics (MD) simulations are employed to equilibrate crystal morphologies at 300 K. The paracrystalline order parameter, g, is calculated to characterize structural order in the materials. Charge-transport dynamics are predicted using kinetic Monte Carlo methods based on a charge-hopping mechanism described by the Marcus theory of electron transfer to calculate charge-transfer rates using the VOTCA package. We introduce an error function to assess the reliability of our computed values to reproduce experimental hole mobilities in both crystalline and thin-film morphologies of the 22 conjugated oligomers. For each of the oligomers, we compute hole mobility with three different theoretical models incorporating increasing measures of disorder: (1) a perfect crystal, based on the experimentally derived crystal structure, with no disorder, (2) an MD-equilibrated structure incorporating thermal disorder into the crystal structure, and (3) model 2 above but also incorporating energetic disorder arising from variations in site energies. For the series of known crystals with long-range order, we find that the perfect crystal model produces hole mobilities giving the best fit to experimental data. For the series of thin-film morphologies with short-range order, we observe that the presence of both thermal and energetic disorder is essential for accurate calculation. We also discuss the interplay between hole mobility and other charge-transport parameters in these morphologies, such as reorganization energy and energetic disorder.

[1]  Zhenan Bao,et al.  Conducting AFM and 2D GIXD studies on pentacene thin films. , 2005, Journal of the American Chemical Society.

[2]  Bo Wang,et al.  Single-Crystal 9,10-Diphenylanthracene Nanoribbons and Nanorods , 2008 .

[3]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[4]  Huanli Dong,et al.  High performance organic semiconductors for field-effect transistors. , 2010, Chemical communications.

[5]  E. M. García-Frutos,et al.  Crystal structure and charge-transport properties of N-trimethyltriindole: Novel p-type organic semiconductor single crystals , 2009 .

[6]  Denis Andrienko,et al.  Challenges for in silico design of organic semiconductors , 2012 .

[7]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[8]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[9]  Larry D. Boardman,et al.  High-Performance OTFTs Using Surface-Modified Alumina Dielectrics , 2003 .

[10]  D. Andrienko,et al.  Effect of Polymorphism, Regioregularity and Paracrystallinity on Charge Transport in Poly(3-hexylthiophene) [P3HT] Nanofibers , 2013 .

[11]  B. Engels,et al.  First-principles calculations of anisotropic charge-carrier mobilities in organic semiconductor crystals , 2011, 1102.4289.

[12]  Qiang Shi,et al.  Theoretical study on charge carrier mobilities of tetrathiafulvalene derivatives. , 2011, Physical chemistry chemical physics : PCCP.

[13]  T. Palstra,et al.  Low-temperature structure of rubrene single crystals grown by vapor transport. , 2006, Acta crystallographica. Section B, Structural science.

[14]  C. Rovira,et al.  Organic field-effect transistors (OFETs) of highly oriented films of dithiophene-tetrathiafulvalene prepared by zone casting , 2008 .

[15]  M. Toney,et al.  A general relationship between disorder, aggregation and charge transport in conjugated polymers. , 2013, Nature materials.

[16]  Teresa L. Chen,et al.  Solution-processable triindoles as hole selective materials in organic solar cells. , 2012, ACS applied materials & interfaces.

[17]  Alexander Lukyanov,et al.  Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors , 2011, Journal of chemical theory and computation.

[18]  Ai-Min Ren,et al.  Charge transport properties in a series of five-ring-fused thienoacenes: A quantum chemistry and molecular mechanic study , 2013 .

[19]  Alexander Lukyanov,et al.  Versatile Object-Oriented Toolkit for Coarse-Graining Applications. , 2009, Journal of chemical theory and computation.

[20]  Thomas N. Jackson,et al.  Thin-film transistors based on well-ordered thermally evaporated naphthacene films , 2002 .

[21]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[22]  A. M. Hindeleh,et al.  Paracrystals representing the physical state of matter , 1988 .

[23]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[24]  B. Batlogg,et al.  Flexible picene thin film field-effect transistors with parylene gate dielectric and their physical properties , 2010 .

[25]  Koichi M. T. Yamada,et al.  Single-crystal field-effect transistors of benzoannulated fused oligothiophenes and oligoselenophenes , 2007 .

[26]  Heinz Bässler,et al.  Charge transport in disordered molecular solids , 1991 .

[27]  Yi Zhao,et al.  Charge transfer in organic molecules for solar cells: theoretical perspective. , 2012, Chemical Society reviews.

[28]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .

[29]  Jie Ying Gao,et al.  High‐Performance Field‐Effect Transistor Based on Dibenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene, an Easily Synthesized Semiconductor with High Ionization Potential , 2007 .

[30]  Karl Leo,et al.  Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. , 2012, Journal of the American Chemical Society.

[31]  J A Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[32]  H. Fuchs,et al.  Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer , 2013 .

[33]  B. Chaudhuri,et al.  Crystalline graphite oxide/PVDF nanocomposite gate dielectric: Low‐voltage and high field effect mobility thin‐film transistor , 2013 .

[34]  N. Karl,et al.  Electron and Hole Mobilities in High Purity Anthracene Single Crystals , 2001 .

[35]  Edward F. Valeev,et al.  Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. , 2006, Journal of the American Chemical Society.

[36]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[37]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[38]  Yan Li,et al.  Heteroarenes as high performance organic semiconductors. , 2013, Chemical Society reviews.

[39]  J. Dunitz,et al.  Temperature dependence of thermal motion in crystalline anthracene , 1990 .

[40]  A. Fujiwara,et al.  Low voltage operation in picene thin film field-effect transistor and its physical characteristics , 2009 .

[41]  K. Akaike,et al.  Accessing surface Brillouin zone and band structure of picene single crystals. , 2012, Physical review letters.

[42]  S. So,et al.  Effects of tertiary butyl substitution on the charge transporting properties of rubrene-based films , 2004 .

[43]  H. Bässler,et al.  Steady-State Photoconduction in Amorphous Organic Solids , 2009 .

[44]  Daoben Zhu,et al.  Micrometer‐Sized Organic Single Crystals, Anisotropic Transport, and Field‐Effect Transistors of a Fused‐Ring Thienoacene , 2009 .

[45]  Daoben Zhu,et al.  Pi-conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. , 2010, Chemical Society reviews.

[46]  Alessandro Troisi,et al.  Charge transport in high mobility molecular semiconductors: classical models and new theories. , 2011, Chemical Society reviews.

[47]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[48]  Tong Wang,et al.  Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers , 2013 .

[49]  C. Rovira,et al.  Novel small molecules for organic field-effect transistors: towards processability and high performance. , 2008, Chemical Society reviews.

[50]  G. Schweicher,et al.  What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors , 2014 .

[51]  Z. Su,et al.  The influence of thienyl-S,S-dioxidation on the photoluminescence and charge transport properties of dithienothiophenes: a theoretical study , 2011 .

[52]  K. Houk,et al.  Simulations of Molecular Ordering and Charge-Transport of Oligo-Didodecylquaterthiophenes (DDQT) , 2015 .

[53]  Alán Aspuru-Guzik,et al.  Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications. , 2014, Topics in current chemistry.

[54]  James Kirkpatrick An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian , 2006 .

[55]  Zhenan Bao,et al.  Integrated materials design of organic semiconductors for field-effect transistors. , 2013, Journal of the American Chemical Society.

[56]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[57]  C. Reese,et al.  Tuning Crystalline Solid‐State Order and Charge Transport via Building‐Block Modification of Oligothiophenes , 2009 .

[58]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[59]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[60]  Mark A Ratner,et al.  Building blocks for N-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nTs; n = 2-6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. , 2004, Journal of the American Chemical Society.

[61]  Yi Liao,et al.  From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. , 2014, Chemical Society reviews.

[62]  K. Takimiya,et al.  High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors , 2009 .

[63]  Alán Aspuru-Guzik,et al.  Theoretical Characterization of the Air-Stable, High-Mobility Dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene Organic Semiconductor , 2010, The Journal of Physical Chemistry C.

[64]  Y. Tokura,et al.  High Mobility Organic Field-Effect Transistor Based on Hexamethylenetetrathiafulvalene with Organic Metal Electrodes , 2007 .

[65]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Zhigang Shuai,et al.  Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors: Oligothiophenes , 2008 .

[67]  F. Rosei,et al.  Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers , 2008 .

[68]  H. Bässler,et al.  How do disorder, reorganization, and localization influence the hole mobility in conjugated copolymers? , 2013, Journal of the American Chemical Society.

[69]  Alessandro Troisi,et al.  Charge transport in organic crystals: role of disorder and topological connectivity. , 2010, Journal of the American Chemical Society.

[70]  A. Fujiwara,et al.  Trap states and transport characteristics in picene thin film field-effect transistor , 2009 .

[71]  Daoben Zhu,et al.  Phase dependence of single crystalline transistors of tetrathiafulvalene , 2007 .

[72]  Martin Huth,et al.  Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. , 2007, Journal of the American Chemical Society.

[73]  Wenping Hu Organic Optoelectronics: HU:ORG.OPTOELECTRONICS O-BK , 2013 .

[74]  R. A. Laudise,et al.  Crystal Growth, Structure, and Electronic Band Structure of α‐4T Polymorphs , 1998 .

[75]  R. J. Kline,et al.  Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films , 2011 .

[76]  A. De,et al.  Structural analysis of picene, C22H14 , 1985 .

[77]  N. Sato,et al.  X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene , 2007 .

[78]  C. Rovira,et al.  Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. , 2004, Journal of the American Chemical Society.

[79]  M. Weil,et al.  Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells , 2011 .

[80]  P. Blom,et al.  Unified description of charge-carrier mobilities in disordered semiconducting polymers. , 2005, Physical review letters.

[81]  William A. Goddard,et al.  Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations , 2004 .

[82]  Adam J. Matzger,et al.  Synthesis and Structure of Fused α-Oligothiophenes with up to Seven Rings , 2005 .

[83]  Daoben Zhu,et al.  Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. , 2012, Chemical reviews.

[84]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[85]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[86]  J. Fréchet,et al.  Organic semiconducting oligomers for use in thin film transistors. , 2007, Chemical reviews.

[87]  Fang Wang,et al.  A highly pi-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene. , 2005, Journal of the American Chemical Society.

[88]  J. Nelson,et al.  Modeling charge transport in organic photovoltaic materials. , 2009, Accounts of chemical research.

[89]  Luisa Torsi,et al.  Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers , 1995 .

[90]  C. Rovira,et al.  High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. , 2004, Journal of the American Chemical Society.

[91]  Daoben Zhu,et al.  6H-Pyrrolo[3,2-b:4,5-b′]bis[1,4]benzothiazines: facilely synthesized semiconductors for organic field-effect transistors , 2008 .

[92]  Paul M. Borsenberger,et al.  Effects of the dipole moment on charge transport in disordered molecular solids , 1993 .

[93]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[94]  Zhenan Bao,et al.  High-performance microscale single-crystal transistors by lithography on an elastomer dielectric , 2006 .

[95]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[96]  Oana D. Jurchescu,et al.  Effect of impurities on the mobility of single crystal pentacene , 2004, cond-mat/0404130.

[97]  Kazuo Takimiya,et al.  Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors , 2007 .

[98]  K. Peter C. Vollhardt,et al.  On the Nature of Nonplanarity in the [N]Phenylenes , 1999 .

[99]  K. Morihashi,et al.  Theoretical investigation of hole mobility in 9,10-diphenylanthracene by density functional calculations , 2011 .

[100]  I. Samuel,et al.  Synthesis and characterisation of new diindenodithienothiophene (DITT) based materials , 2010 .

[101]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[102]  J. Kalus,et al.  X‐ray powder diffraction investigation of naphthalene up to 0.5 GPa , 1982 .

[103]  Wei-Qiao Deng,et al.  First-principles investigation of anistropic hole mobilities in organic semiconductors. , 2009, The journal of physical chemistry. B.

[104]  Giant phototransistor response in dithienyltetrathiafulvalene derivatives , 2013 .

[105]  C. Rovira,et al.  Synthesis of Several Isomeric Tetrathiafulvalene .pi.-Electron Donors with Peripheral Sulfur Atoms. A Study of Their Radical Cations , 1994 .

[106]  W. Warta,et al.  Ultrapure, high mobility organic photoconductors , 1985 .

[107]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[108]  F. Bechstedt,et al.  Charge transport in organic crystals: Theory and modelling , 2011 .

[109]  J. Nelson,et al.  A numerical study of mobility in thin films of fullerene derivatives. , 2010, The Journal of chemical physics.

[110]  Alán Aspuru-Guzik,et al.  From computational discovery to experimental characterization of a high hole mobility organic crystal , 2011, Nature communications.

[111]  A. Troisi,et al.  Morphology and Charge Transport in P3HT: A Theorist's Perspective , 2014 .

[112]  John E. Anthony,et al.  High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors , 2007 .

[113]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[114]  James Y. Becker,et al.  A New Polymorphic Modification of Tetrathiafulvalene. Crystal Structure, Lattice Energy and Intermolecular Interactions , 1994 .

[115]  V. Langer,et al.  Crystal structure of 9,10-diphenylanthracene, (C6H5)(C14H8)(C6H5) , 1992 .

[116]  Wang Xiaofeng,et al.  Theoretical study of the charge carrier mobilities of the molecular materials tetrathiafulvalene (TTF) and 2,5-bis(1,3-dithiolan-2-ylidene)- 1,3,4,6-tetrathiapentalene (BDH-TTP) , 2012 .

[117]  Matthias Weil,et al.  Interrelation between Crystal Packing and Small‐Molecule Organic Solar Cell Performance , 2012, Advanced materials.

[118]  J. Pflaum,et al.  Growth and Electronic Transport in 9,10‐Diphenylanthracene Single Crystals—An Organic Semiconductor of High Electron and Hole Mobility , 2007 .