Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification

[1]  Charles F. Manski,et al.  Partial Identification of Probability Distributions (Springer Series in Statistics) , 2011 .

[2]  Giorgio Corani,et al.  A tree augmented classifier based on Extreme Imprecise Dirichlet Model , 2010, Int. J. Approx. Reason..

[3]  Marco Zaffalon,et al.  Epistemic irrelevance in credal nets: The case of imprecise Markov trees , 2010, Int. J. Approx. Reason..

[4]  Fabio Cuzzolin,et al.  Credal Sets Approximation by Lower Probabilities: Application to Credal Networks , 2010, IPMU.

[5]  Alessio Benavoli,et al.  Restricting the IDM for Classification , 2010, IPMU.

[6]  Gert de Cooman,et al.  Independent natural extension , 2010, Artif. Intell..

[7]  Yi Sun,et al.  Generalized loopy 2U: A new algorithm for approximate inference in credal networks , 2010, Int. J. Approx. Reason..

[8]  Juan José del Coz,et al.  Learning Nondeterministic Classifiers , 2009, J. Mach. Learn. Res..

[9]  G. Oyibo,et al.  Advances in Mathematics Research , 2009 .

[10]  Marco Zaffalon,et al.  Reliable hidden Markov model filtering through coherent lower previsions , 2009, 2009 12th International Conference on Information Fusion.

[11]  Marco Zaffalon,et al.  Lazy naive credal classifier , 2009, U '09.

[12]  Alessio Benavoli,et al.  Inference from Multinomial Data Based on a MLE-Dominance Criterion , 2009, ECSQARU.

[13]  Marco Zaffalon,et al.  Conservative Inference Rule for Uncertain Reasoning under Incompleteness , 2009, J. Artif. Intell. Res..

[14]  Marco Zaffalon,et al.  Credal networks for military identification problems , 2009, Int. J. Approx. Reason..

[15]  Michael G. Madden,et al.  On the classification performance of TAN and general Bayesian networks , 2008, Knowl. Based Syst..

[16]  Marco Zaffalon,et al.  JNCC2: The Java Implementation Of Naive Credal Classifier 2 , 2008 .

[17]  Marco Zaffalon,et al.  Decision-theoretic specification of credal networks: A unified language for uncertain modeling with sets of Bayesian networks , 2008, Int. J. Approx. Reason..

[18]  Marco Zaffalon,et al.  Credal Model Averaging: An Extension of Bayesian Model Averaging to Imprecise Probabilities , 2008, ECML/PKDD.

[19]  Marco Zaffalon,et al.  Learning Reliable Classifiers From Small or Incomplete Data Sets: The Naive Credal Classifier 2 , 2008, J. Mach. Learn. Res..

[20]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[21]  F. Cozman,et al.  Inference in Credal Networks Through Integer Programming , 2007 .

[22]  J. Scheffran,et al.  Advanced Methods for Decision Making and Risk Management in Sustainability Science , 2007 .

[23]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[24]  Marco Zaffalon,et al.  Credal Networks for Operational Risk Measurement and Management , 2007, KES.

[25]  Tamotsu Takahashi,et al.  What is debris flow , 2007 .

[26]  Luís Torgo,et al.  Proceedings of the 16th European conference on Machine Learning , 2005 .

[27]  Marco Zaffalon,et al.  Robust inference of trees , 2005, Annals of Mathematics and Artificial Intelligence.

[28]  Marco Zaffalon,et al.  Credible classification for environmental problems , 2005, Environ. Model. Softw..

[29]  M. Jaeger Ignorability for categorical data , 2005, math/0508314.

[30]  Fabio Gagliardi Cozman,et al.  The Inferential Complexity of Bayesian and Credal Networks , 2005, IJCAI.

[31]  Serafín Moral,et al.  Upper entropy of credal sets. Applications to credal classification , 2005, Int. J. Approx. Reason..

[32]  R. Setchi,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[33]  Gregory F. Cooper,et al.  Model Averaging for Prediction with Discrete Bayesian Networks , 2004, J. Mach. Learn. Res..

[34]  F. Fleuret Fast Binary Feature Selection with Conditional Mutual Information , 2004, J. Mach. Learn. Res..

[35]  R. Webb,et al.  Frequency and initiation of debris flows in Grand Canyon, Arizona , 2004 .

[36]  Enrico Fagiuoli,et al.  Tree-Based Credal Networks for Classification , 2003, Reliab. Comput..

[37]  Marco Zaffalon,et al.  Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data , 2003, Artif. Intell. Medicine.

[38]  Gert de Cooman,et al.  Updating beliefs with incomplete observations , 2003, Artif. Intell..

[39]  Bernhard Pfahringer,et al.  Locally Weighted Naive Bayes , 2002, UAI.

[40]  Fabio Gagliardi Cozman,et al.  Inference in Polytrees with Sets of Probabilities , 2002, UAI.

[41]  Fabio Gagliardi Cozman,et al.  Inference with Seperately Specified Sets of Probabilities in Credal Networks , 2002, UAI.

[42]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  D. Hand,et al.  Idiot's Bayes—Not So Stupid After All? , 2001 .

[44]  Charles Elkan,et al.  Magical thinking in data mining: lessons from CoIL challenge 2000 , 2001, KDD '01.

[45]  Fabio Gagliardi Cozman,et al.  Credal networks , 2000, Artif. Intell..

[46]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[47]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[48]  AnHai Doan,et al.  Geometric foundations for interval-based probabilities , 1998, Annals of Mathematics and Artificial Intelligence.

[49]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[50]  M. Pazzani,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[51]  Ron Kohavi Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.

[52]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[53]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[54]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[55]  Bjørnar Tessem,et al.  Interval probability propagation , 1992, Int. J. Approx. Reason..

[56]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[57]  L. N. Kanal,et al.  Uncertainty in Artificial Intelligence 5 , 1990 .

[58]  B. Finetti,et al.  Theory of Probability , 1990 .

[59]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[60]  Subir Ghosh,et al.  Statistical Analysis With Missing Data , 1988 .

[61]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[62]  อนิรุธ สืบสิงห์ Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[63]  Marco Zaffalon,et al.  Building Knowledge-based Systems by Credal Networks: a Tutorial , 2010 .

[64]  Jürgen Schmidhuber,et al.  Robust Texture Recognition Using Credal Classifiers , 2010, BMVC.

[65]  Eyke Hüllermeier,et al.  Computational Intelligence for Knowledge-Based Systems Design, 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 - July 2, 2010. Proceedings , 2010, IPMU.

[66]  Andrés Cano,et al.  Credal Nets with Probabilities Estimated with an Extreme Imprecise Dirichlet Model , 2007 .

[67]  Marco Zaffalon,et al.  Credal Networks for Hazard Assessment of Debris Flows , 2007 .

[68]  Zoë Hoare,et al.  Landscapes of Naïve Bayes classifiers , 2007, Pattern Analysis and Applications.

[69]  Marco Zaffalon,et al.  Equivalence Between Bayesian and Credal Nets on an Updating Problem , 2006, SMPS.

[70]  Marco Zaffalon,et al.  Conservative Rules for Predictive Inference with Incomplete Data , 2005, ISIPTA.

[71]  Frank P. A. Coolen,et al.  Learning from multinomial data: a nonparametric predictive alternative to the Imprecise Dirichlet Model , 2005, ISIPTA.

[72]  Fabio Gagliardi Cozman,et al.  IPE and L2U: approximate algorithms for credal networks , 2004 .

[73]  Matthias C. M. Troffaes,et al.  Decision Making with Imprecise Probabilities: A Short Review , 2004 .

[74]  P. van der Putten,et al.  A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000 , 2004 .

[75]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[76]  Francesca Molinari Partial Identi…cation of Probability Distributions with Misclassi…ed Data , 2004 .

[77]  Fabio Gagliardi Cozman,et al.  Inference in Credal Networks with Branch-and-Bound Algorithms , 2003, ISIPTA.

[78]  M. Clyde,et al.  Model Uncertainty , 2003 .

[79]  C. Manski Partial Identification of Probability Distributions , 2003 .

[80]  Andr Es Cano,et al.  Using Probability Trees to Compute Marginals with Imprecise Probabilities , 2002 .

[81]  Marco Zaffalon,et al.  Statistical inference of the naive credal classifier , 2001, ISIPTA.

[82]  M. Birattari,et al.  Lazy learning for local modelling and control design , 1999 .

[83]  Serafín Moral,et al.  A Review of Propagation Algorithms for Imprecise Probabilities , 1999, ISIPTA.

[84]  Gert de Cooman,et al.  ISIPTA '99, Proceedings of the First International Symposium on Imprecise Probabilities and Their Applications, held at the Conference Center "Het Pand" of the Universiteit Gent, Ghent, Belgium, 29 June - 2 July 1999 , 1999, ISIPTA.

[85]  S. Moral,et al.  Examples of Independence for Imprecise Probabilities , 1999, ISIPTA.

[86]  J. Pearl Probabilistic reasoning in intelligent systems: networks of plausible inference" Morgan Kaufmann , 1997 .

[87]  Fabio Gagliardi Cozman,et al.  Robustness Analysis of Bayesian Networks with Finitely Generated Convex Sets of Distributions , 1997 .

[88]  Ron Kohavi,et al.  Improving simple Bayes , 1997 .

[89]  Gerhard Widmer,et al.  Machine Learning: ECML-97 , 1997, Lecture Notes in Computer Science.

[90]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[91]  Andrés Cano,et al.  Convex Sets Of Probabilities Propagation By Simulated Annealing , 1994 .

[92]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[93]  J. Pearl Probabilistic reasoning in intelligent systems - networks of plausible inference , 1989, Morgan Kaufmann series in representation and reasoning.

[94]  John E. Costa,et al.  Physical Geomorphology of Debris Flows , 1984 .

[95]  Isaac Levi,et al.  The Enterprise Of Knowledge , 1980 .

[96]  A. N. Kolmogorov,et al.  Theory of Probability , 1929, Nature.

[97]  J. Alexander Theory and methods , 1926 .