Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis.

[1]  F A Quiocho,et al.  Carboxypeptidase A: a protein and an enzyme. , 1971, Advances in protein chemistry.

[2]  H. A. Sober,et al.  Handbook of Biochemistry: Selected Data for Molecular Biology , 1971 .

[3]  Y. Burstein,et al.  Evidence of an essential histidine residue in thermolysin. , 1974, Biochemistry.

[4]  Dahlquist Fw,et al.  Magnetic resonance studies of the active-site region of thermolysin. , 1974 .

[5]  G N Reeke,et al.  The structure of carboxypeptidase A. 8. Atomic interpretation at 0.2 nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  B. Vallee,et al.  Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme. , 1974, The Journal of biological chemistry.

[7]  W. Lipscomb,et al.  1 Carboxypeptidase A , 1971 .

[8]  C. E. Klopfenstein,et al.  A computer controlled film scanner for X-ray crystallography , 1972 .

[9]  G. Reeke,et al.  The structure of carboxypeptidase A. IX. The x-ray diffraction results in the light of the chemical sequence. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Feder,et al.  Role of calcium in thermolysin , 1971 .

[11]  B P Schoenborn,et al.  Three-dimensional structure of thermolysin. , 1972, Nature: New biology.

[12]  B. Matthews,et al.  The structure of thermolysin: an electron density map at 2-3 A resolution. , 1972, Journal of molecular biology.

[13]  B. Vallee,et al.  Reversible inactivation and superactivation by covalent modification of thermolysin. , 1973, Biochemical and biophysical research communications.

[14]  D. Blow,et al.  Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin , 1969, Nature.

[15]  B. Vallee,et al.  Thermolysin: a zinc metalloenzyme. , 1969, Biochemical and biophysical research communications.

[16]  J. Feder,et al.  Studies on the Bacillus subtilis neutral-protease- and Bacillus thermoproteolyticus thermolysin-catalyzed hydrolysis of dipeptide substrates. , 1970, Biochemistry.

[17]  Richard J. Sundberg,et al.  Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems , 1974 .

[18]  B. Matthews,et al.  A structure for thermolysin. , 1972, Nature.

[19]  K Morihara,et al.  Comparison of the specificities of various neutral proteinases from microorganisms. , 1968, Archives of biochemistry and biophysics.

[20]  B. Holmquist,et al.  Modulation of Thermolysin Activity. Reversibility of Inactivation and Superactivation , 1974 .

[21]  F M Richards,et al.  The matching of physical models to three-dimensional electron-density maps: a simple optical device. , 1968, Journal of molecular biology.

[22]  H. Matsubara Observations on the specificity of thermolysin with synthetic peptides. , 1966, Biochemical and biophysical research communications.

[23]  H. Tsuzuki,et al.  Thermolysin: kinetic study with oligopeptides. , 1970, European journal of biochemistry.

[24]  K. Morihara The specificities of various neutral and alkaline proteinases from microorganisms. , 1967, Biochemical and biophysical research communications.

[25]  J. Feder,et al.  Inhibition of thermolysin by dipeptides. , 1974, Biochemistry.

[26]  B. Matthews,et al.  The conformation of thermolysin. , 1974, The Journal of biological chemistry.

[27]  K. Titani,et al.  Amino-acid sequence of thermolysin. , 1972, Nature: New biology.

[28]  B. Matthews,et al.  A method of obtaining a stereochemically acceptable protein model which fits a set of atomic coordinates , 1976 .

[29]  M. Pangburn,et al.  Thermolysin and neutral protease. Mechanistic considerations , 1975 .