Quantile regression without the curse of unsmoothness

We consider quantile regression models and investigate the induced smoothing method for obtaining the covariance matrix of the regression parameter estimates. We show that the difference between the smoothed and unsmoothed estimating functions in quantile regression is negligible. The detailed and simple computational algorithms for calculating the asymptotic covariance are provided. Intensive simulation studies indicate that the proposed method performs very well. We also illustrate the algorithm by analyzing the rainfall–runoff data from Murray Upland, Australia.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  R. Koenker Confidence Intervals for Regression Quantiles , 1994 .

[3]  R. Koenker,et al.  Regression Quantiles , 2007 .

[4]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[5]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[6]  Andrzej S. Kozek,et al.  On M-estimators and normal quantiles , 2003 .

[7]  Z. Ying,et al.  A resampling method based on pivotal estimating functions , 1994 .

[8]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[9]  Ying Wei,et al.  Computational Issues for Quantile Regression , 2005 .

[10]  Roger Koenker,et al.  Inequality constrained quantile regression , 2005 .

[11]  Q. Shao,et al.  A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs , 1996 .

[12]  R. Koenker,et al.  A Remark on Algorithm as 229: Computing Dual Regression Quantiles and Regression Rank Scores , 1994 .

[13]  Andrzej S. Kozek,et al.  How to Combine M-estimators to Estimate Quantiles and a Score Function , 2005 .

[14]  Stephen M. S. Lee,et al.  Calibrated interpolated confidence intervals for population quantiles , 2005 .

[15]  B. M. Brown,et al.  Standard errors and covariance matrices for smoothed rank estimators , 2005 .

[16]  Shan Sun,et al.  Necessary and sufficient conditions for the asymptotic normality of perturbed sample quantiles , 1993 .

[17]  Feifang Hu,et al.  Markov Chain Marginal Bootstrap , 2002 .

[18]  E. Nadaraya On Estimating Regression , 1964 .