Random density functions with common atoms and pairwise dependence

The paper is concerned with constructing pairwise dependence between $m$ random density functions each of which is modeled as a mixture of Dirichlet process model. The key to this is how to create dependencies between random Dirichlet processes. The present paper adopts a plan previously used for creating pairwise dependence, with the simplification that all random Dirichlet processes share the same atoms. Our contention is that for all dependent Dirichlet process models, common atoms are sufficient. We show that by adopting common atoms, it is possible to compute the $L_p$ distances between all pairs of random probability measures.

[1]  D. Blei Bayesian Nonparametrics I , 2016 .

[2]  Stephen G. Walker,et al.  Dependent mixtures of Dirichlet processes , 2011, Comput. Stat. Data Anal..

[3]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[4]  N. H. Timm Applied Multivariate Analysis , 2002 .

[5]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[6]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[7]  L. Tardella,et al.  Approximating distributions of random functionals of Ferguson‐Dirichlet priors , 1998 .

[8]  Jim E. Griffin,et al.  On Bayesian nonparametric modelling of two correlated distributions , 2013, Stat. Comput..

[9]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[10]  Stephen G. Walker,et al.  A Bayesian nonparametric estimator of a multivariate survival function , 2009 .

[11]  S. MacEachern,et al.  An ANOVA Model for Dependent Random Measures , 2004 .

[12]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[13]  A. Lijoi,et al.  Bayesian inference with dependent normalized completely random measures , 2014, 1407.0482.

[14]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[15]  D. Dunson,et al.  Kernel stick-breaking processes. , 2008, Biometrika.

[16]  M. Steel,et al.  Comparing distributions by using dependent normalized random‐measure mixtures , 2013 .

[17]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[18]  Antonio Lijoi,et al.  Dependent mixture models: Clustering and borrowing information , 2014, Comput. Stat. Data Anal..

[19]  P. Müller,et al.  A method for combining inference across related nonparametric Bayesian models , 2004 .