Applications of CALPHAD modeling and databases in advanced lightweight metallic materials

Abstract This paper presents an overview on the application of CALPHAD (CALculation of Phase Diagrams) methodology in the design and development of advanced lightweight metallic materials including magnesium, aluminum, titanium, aluminum-based metal matrix composites, and high entropy alloys. In this work, CALPHAD methodology has been established and summarized from the construction of databases describing thermodynamics, atomic mobility, kinetics, thermo-physical properties (such as viscosity) to the application of computational design of lightweight materials. The examples in this paper have demonstrated the effectiveness and capability of CALPHAD methodology in accelerating the design of advanced lightweight materials by optimizing the compositions and various heat-treatment conditions, modifying the evolution of microstructures during processing, and finally predicting the mechanical properties (e.g., yield strength and hardness) of the lightweight components. Although the examples are given in lightweight alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. Thus, the future of the advanced material design will be strongly based on development of CALPHAD methodology such as the construction of reliable databases coupled with CALPHAD-based models for various applications.

[1]  Zi-kui Liu,et al.  Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system , 2007 .

[2]  M. Gibson,et al.  Refinement of precipitate distributions in an age-hardenable Mg–Sn alloy through microalloying , 2006 .

[3]  Tongsan D. Xiao,et al.  Homogeneous dispersion of nanostructured aluminum nitride in a polyimide matrix , 1994 .

[4]  B. Bronfin,et al.  Preparation and solidification features of AS21 magnesium alloy , 2001 .

[5]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[6]  S. Mudry,et al.  Viscosity of Bi–Zn liquid alloys , 2008 .

[7]  Yan-bin Chen,et al.  Effect of cooling rates on as-cast microstructures of Mg-9Al-xSi (x=1, 3) alloys , 2010 .

[8]  Hartmut Neumann,et al.  The viscosity of liquid immiscible Zn-Pb-based alloys , 2000 .

[9]  W. Ding,et al.  Microstructure and Mechanical Properties of Mg-7Al-2Sn Alloy Processed by Super Vacuum Die-Casting , 2013, Metallurgical and Materials Transactions A.

[10]  Baicheng Liu,et al.  Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys , 2015, Metallurgical and Materials Transactions A.

[11]  Hongseok Choi,et al.  Theoretical study and pathways for nanoparticle capture during solidification of metal melt , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  A. Luo,et al.  Solidification Microstructure and Mechanical Properties of Cast Magnesium-Aluminum-Tin Alloys , 2011, Metallurgical and Materials Transactions A.

[13]  J. Nie,et al.  Enhanced precipitation-hardening in Mg–Gd alloys containing Ag and Zn , 2008 .

[14]  David Dean,et al.  Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. , 2017, Journal of the mechanical behavior of biomedical materials.

[15]  Ying Yang,et al.  PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation , 2009 .

[16]  Yong Du,et al.  Modeling of the viscosity in the AL–Cu–Mg–Si system: Database construction , 2015 .

[17]  Bob R. Powell,et al.  Computational phase equilibria and experimental investigation of magnesium–aluminum–calcium alloys , 2012 .

[18]  Nack J. Kim,et al.  Development of creep resistant die cast Mg–Sn–Al–Si alloy , 2005 .

[19]  D. Stefanescu,et al.  Particle engulfment and pushing by solidifying interfaces: Part II. Microgravity experiments and theoretical analysis , 1998 .

[20]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[21]  A. Luo Recent magnesium alloy development for elevated temperature applications , 2004 .

[22]  T. Pollock Weight Loss with Magnesium Alloys , 2010, Science.

[23]  Neale R. Neelameggham,et al.  Essential Readings in Magnesium Technology , 2016 .

[24]  Xionggang Lu,et al.  Calculation of phase equilibria in Ti–Al–Mn ternary system involving a new ternary intermetallic compound , 2010 .

[25]  Livio Battezzati,et al.  The viscosity of liquid metals and alloys , 1989 .

[26]  Donald S. Stone,et al.  Experimental investigation and simulation of precipitation evolution in Mg-3Nd-0.2Zn alloy , 2018 .

[27]  N. Saunders When is a compound energy not a compound energy ? A critique of the 2-sublattice order/disorder model , 1996 .

[28]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .

[29]  Gregory B Olson,et al.  Genomic materials design: The ferrous frontier , 2013 .

[30]  Xuejun Huang,et al.  Phase formations in low density high entropy alloys , 2017 .

[31]  Ivan Egry,et al.  Thermophysical properties of liquid Al-Ni alloys , 2008 .

[32]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[33]  Toshio Itami CONDENSED MATTER-LIQUID TRANSITION METALS AND ALLOYS , 1995 .

[34]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[35]  Masazumi Hirai Estimation of Viscosities of Liquid Alloys , 1993 .

[36]  Xuejun Huang,et al.  Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying , 2018, Journal of Materials Science.

[37]  Alan A. Luo,et al.  Material design and development: From classical thermodynamics to CALPHAD and ICME approaches , 2015 .

[38]  M. Hillert,et al.  The Regular Solution Model for Stoichiometric Phases and Ionic Melts. , 1970 .

[39]  Doru M. Stefanescu,et al.  A dynamic model for the interaction between a solid particle and an advancing solid/liquid interface , 1992 .

[40]  Hani Henein,et al.  Physicochemical Properties of Sb, Sn, Zn, and Sb–Sn System , 2013 .

[41]  Jien-Wei Yeh,et al.  High-Entropy Alloys , 2014 .

[42]  Yuzuru Sato Representation of the Viscosity of Molten Alloy as a Function of the Composition and Temperature , 2011 .

[43]  F. Sauerwald,et al.  Über die innere Reibung geschmolzener Metalle und Legierungen. VI. Die innere Reibung von Pb, Cd, Zn, Ag, Sn, K, Na und die Frage der Strukturviskosität von Amalgamen , 1935 .

[44]  A. Luo,et al.  High-ductility magnesium–zinc–cerium extrusion alloys , 2011 .

[45]  A. Luo,et al.  The evolution of technology for materials processing over the last 50 years: The automotive example , 2007 .

[46]  Hiroshi Mabuchi,et al.  Formation of structural L12 compounds in TiAl3-base alloys containing Mn , 1989 .

[47]  L. J. Wittenberg,et al.  VISCOSITY OF BISMUTH, LEAD, AND ZINC TO 1000 C , 1963 .

[48]  Alan Dinsdale,et al.  The measurement of viscosity of alloys—a review of methods, data and models , 2005 .

[49]  Yoshiyuki Shirakawa,et al.  Simulation of shear viscosity in liquid metals , 1996 .

[50]  Ivan Egry,et al.  Viscosity of the binary system Al-Ni , 2008 .

[51]  Ian P. Jones,et al.  Laves phase in Ti-42Al-10Mn alloy , 1996 .

[52]  Christopher M Wolverton,et al.  Predicting β′ precipitate morphology and evolution in Mg–RE alloys using a combination of first-principles calculations and phase-field modeling , 2014 .

[53]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[54]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[55]  Donald S. Stone,et al.  Comprehensive study of phase transformation in age-hardening of Mg–3Nd–0.2Zn by means of scanning transmission electron microscopy , 2015 .

[56]  Peng Liu,et al.  Effects of Si on Structure and Properties of Mg-Sn Alloy , 2013 .

[57]  Zen-ichiro Morita,et al.  Viscosity Measurements of Pure Liquid Metals by the Capillary Method , 1975 .

[58]  A. Luo,et al.  Precipitation Simulation of AZ91 Alloy , 2014 .

[59]  K. Ishida,et al.  Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys , 2000 .

[60]  M. Trybula,et al.  Density, surface tension and viscosity of liquid binary Al-Zn and ternary Al-Li-Zn alloys , 2016 .

[61]  Fu Penghuai,et al.  Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy , 2008 .

[62]  J. Ågren,et al.  Models for numerical treatment of multicomponent diffusion in simple phases , 1992 .

[63]  Z. Y. Qiao,et al.  Thermodynamic criterion for judging the symmetry of ternary systems and criterion applications , 1996 .

[64]  Xiaolong Ma,et al.  Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles , 2015, Nature.

[65]  T. Velikanova,et al.  The Al–B–Nb–Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al–Ti , 2008 .

[66]  Frank J Cherne,et al.  CALCULATION OF VISCOSITY OF LIQUID NICKEL BY MOLECULAR DYNAMICS METHODS , 1998 .

[67]  Gunter Gerbeth,et al.  Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation , 2016 .

[68]  K. Lu,et al.  The Future of Metals , 2010, Science.

[69]  Ji-Cheng Zhao,et al.  CALPHAD—Is It Ready for Superalloy Design? , 2002 .

[70]  Takehiko Ishikawa,et al.  Viscosity measurements of molten refractory metals using an electrostatic levitator , 2012 .

[71]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[72]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[73]  J. Nie Precipitation and Hardening in Magnesium Alloys , 2012, Metallurgical and Materials Transactions A.

[74]  Yuzuru Sato,et al.  Viscosities of Fe–Ni, Fe–Co and Ni–Co binary melts , 2005 .

[75]  Bob R. Powell,et al.  Creep and microstructure of magnesium-aluminum-calcium based alloys , 2002 .

[76]  H. Tsuda,et al.  Effects of manganese on the L12 compound formation in Al3Ti-based alloys , 1996 .

[77]  Jürgen Horbach,et al.  Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation , 2016 .

[78]  N. Jakse,et al.  Dynamic properties and local order in liquid Al-Ni alloys , 2014 .

[79]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[80]  G. B. Olson,et al.  Designing a New Material World , 2000, Science.

[81]  Robert J. Warmack,et al.  Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn , 2014 .

[82]  Donald S. Stone,et al.  Precipitation evolution and hardening in MgSmZnZr alloys , 2016 .

[83]  Liming Peng,et al.  Thermodynamic modeling and experimental investigation of the magnesium–neodymium–zinc alloys , 2011 .

[84]  Alan A. Luo,et al.  Advanced lightweight materials and manufacturing processes for automotive applications , 2015 .

[85]  A. Dinsdale SGTE data for pure elements , 1991 .

[86]  Hans-Jörg Fecht,et al.  Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments , 2011 .

[87]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[88]  Fan Zhang,et al.  An integrated computational tool for precipitation simulation , 2011 .

[89]  G. W. Toop,et al.  Predicting Ternary Activities Using Binary Data , 1965 .

[90]  W. A. Oates,et al.  Phase diagram calculation: past, present and future , 2004 .

[91]  Baicheng Liu,et al.  Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys , 2015 .