Thermal QCD Axions across Thresholds
暂无分享,去创建一个
[1] Francesco D’Eramo,et al. Thermal Axion Production at Low Temperatures: A Smooth Treatment of the QCD Phase Transition. , 2021, Physical review letters.
[2] L. Leinson. Impact of axions on the Cassiopea A neutron star cooling , 2021, Journal of Cosmology and Astroparticle Physics.
[3] Fabrizio Rompineve,et al. Dine-Fischler-Srednicki-Zhitnitsky axion in the CMB , 2021 .
[4] B. Fields,et al. The impact of new d(p,γ)3 rates on Big Bang Nucleosynthesis , 2021, Journal of Cosmology and Astroparticle Physics.
[5] Francesco D’Eramo,et al. Displaced new physics at colliders and the early universe before its first second , 2021, Journal of High Energy Physics.
[6] G. Martinelli,et al. Breakdown of Chiral Perturbation Theory for the Axion Hot Dark Matter Bound. , 2021, Physical review letters.
[7] J. A. Dror,et al. Cosmic axion background , 2021, Physical Review D.
[8] M. Neubert,et al. The low-energy effective theory of axions and ALPs , 2020, Journal of High Energy Physics.
[9] M. Chala,et al. Running in the ALPs , 2020, The European Physical Journal C.
[10] A. Notari,et al. Production of thermal axions across the electroweak phase transition , 2020, Journal of Cosmology and Astroparticle Physics.
[11] M. Drewes,et al. Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2020, 2012.02726.
[12] A. Melchiorri,et al. New cosmological bounds on hot relics: axions and neutrinos , 2020, 2011.14704.
[13] B. Fields,et al. The Impact of New d(p,\gamma)He3 Rates on Big Bang Nucleosynthesis , 2020, 2011.13874.
[14] K. Stöckel,et al. The baryon density of the Universe from an improved rate of deuterium burning , 2020, Nature.
[15] A. Notari,et al. Cosmic imprints of XENON1T axions , 2020, Journal of Cosmology and Astroparticle Physics.
[16] Masahide Yamaguchi,et al. A precision calculation of relic neutrino decoupling , 2020, Journal of Cosmology and Astroparticle Physics.
[17] P. Sikivie. Invisible axion search methods , 2020, 2003.02206.
[18] M. Giannotti,et al. The landscape of QCD axion models , 2020, Physics Reports.
[19] M. Burghoff,et al. Measurement of the Permanent Electric Dipole Moment of the Neutron. , 2020, Physical review letters.
[20] Vladyslav Shtabovenko,et al. FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..
[21] M. Drewes,et al. Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model: the QED equation of state , 2019, Journal of Cosmology and Astroparticle Physics.
[22] L. Verde,et al. Tensions between the early and late Universe , 2019, Nature Astronomy.
[23] Mark Halpern,et al. CMB-S4 Science Case, Reference Design, and Project Plan , 2019, 1907.04473.
[24] T. Fischer,et al. Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung , 2019, Journal of Cosmology and Astroparticle Physics.
[25] Benjamin Rose,et al. Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics , 2019, 1903.04763.
[26] A. Slosar,et al. First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations , 2019, Nature Physics.
[27] J. Bernal,et al. Hot axions and the H0 tension , 2018, Journal of Cosmology and Astroparticle Physics.
[28] K. Hamaguchi,et al. Limit on the axion decay constant from the cooling neutron star in Cassiopeia A , 2018, Physical Review D.
[29] K. Saikawa,et al. Primordial gravitational waves, precisely: the role of thermodynamics in the Standard Model , 2018, 1803.01038.
[30] R. Essig,et al. Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle , 2018, Journal of High Energy Physics.
[31] I. Irastorza,et al. New experimental approaches in the search for axion-like particles , 2018, Progress in Particle and Nuclear Physics.
[32] A. Notari,et al. Observable Windows for the QCD Axion Through the Number of Relativistic Species. , 2018, Physical review letters.
[33] M. Dine,et al. Some remarks on anthropic approaches to the strong CP problem , 2018, Journal of High Energy Physics.
[34] A. Tranberg,et al. Nonperturbative Analysis of the Electroweak Phase Transition in the Two Higgs Doublet Model. , 2017, Physical review letters.
[35] M. Drees,et al. Dark matter production in an early matter dominated era , 2017, 1711.05007.
[36] Zhaofeng Kang,et al. On ultraviolet freeze-in dark matter during reheating , 2017, 1711.02556.
[37] A. Chaudhuri,et al. Electroweak phase transition and entropy release in the early universe , 2017, 1711.01801.
[38] K. Olive,et al. Enhancement of the dark matter abundance before reheating: Applications to gravitino dark matter , 2017, 1709.01549.
[39] Chan Beom Park,et al. Minimal flavor violation with axion-like particles , 2017, Journal of High Energy Physics.
[40] K. Mimasu,et al. The Higgs vacuum uplifted: revisiting the electroweak phase transition with a second Higgs doublet , 2017, 1705.09186.
[41] J. Zupan,et al. Minimal axion model from flavor , 2017 .
[42] M. Laine,et al. Basics of Thermal Field Theory , 2017, 1701.01554.
[43] K. Hamaguchi,et al. Flaxion: a minimal extension to solve puzzles in the standard model , 2016, Journal of High Energy Physics.
[44] M. Mühlleitner,et al. Strong first order electroweak phase transition in the CP-conserving 2HDM revisited , 2016, Journal of High Energy Physics.
[45] K. Kanaya,et al. Equation of state in (2+1)-flavor QCD with gradient flow , 2016, 1610.09518.
[46] Adam G. Riess,et al. The trouble with H0 , 2016, 1607.05617.
[47] T. Fischer,et al. Probing axions with the neutrino signal from the next Galactic supernova , 2016, 1605.08780.
[48] Daniel Baumann,et al. New Target for Cosmic Axion Searches. , 2016, Physical review letters.
[49] Frederik Orellana,et al. New developments in FeynCalc 9.0 , 2016, Comput. Phys. Commun..
[50] Javier Pardo Vega,et al. The QCD axion, precisely , 2015, 1511.02867.
[51] D. Marsh,et al. Axion Cosmology , 2015, 1510.07633.
[52] S. Lamoreaux,et al. Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.
[53] C. DeTar,et al. Electromagnetic effects on the light hadron spectrum , 2015, 1510.04997.
[54] S. N. Ivanov,et al. Revised experimental upper limit on the electric dipole moment of the neutron , 2015, 1509.04411.
[55] D. Pleiter,et al. Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED , 2015, 1508.06401.
[56] F. Cyr-Racine,et al. Sterile neutrino dark matter: Weak interactions in the strong coupling epoch , 2015, 1507.06655.
[57] D. Pappadopulo,et al. Freeze-In dark matter with displaced signatures at colliders , 2015, 1506.07532.
[58] Scott Thomas,et al. The hunt for the rest of the Higgs bosons , 2015, Journal of High Energy Physics.
[59] Masaki Yamada,et al. Observable dark radiation from a cosmologically safe QCD axion , 2015, 1504.04126.
[60] M. Drees,et al. The effects of QCD equation of state on the relic density of WIMP dark matter , 2015, 1503.03513.
[61] D. Espriu,et al. Axion-Higgs interplay in the two Higgs-doublet model , 2015, 1503.02953.
[62] D. Pappadopulo,et al. Multiverse dark matter: SUSY or axions , 2014, 1409.5123.
[63] L. Althaus,et al. Revisiting the axion bounds from the Galactic white dwarf luminosity function , 2014, 1406.7712.
[64] H. Haber. The Higgs data and the Decoupling Limit , 2013, 1401.0152.
[65] M. Catelán,et al. Neutrino and axion bounds from the globular cluster M5 (NGC 5904). , 2013, Physical review letters.
[66] Wei Xue,et al. Thermal axion production , 2013, 1310.6982.
[67] S. Huber,et al. A strong electroweak phase transition in the 2HDM after LHC8 , 2013, 1305.6610.
[68] David E. Kaplan,et al. New light species and the CMB , 2013, 1303.5379.
[69] R. Petronzio,et al. Leading isospin breaking effects on the lattice , 2013, 1303.4896.
[70] E. Megías,et al. The hadron resonance gas model: thermodynamics of QCD and Polyakov loop , 2012, 1207.7287.
[71] M. Trott,et al. Electroweak baryogenesis in two Higgs doublet models and B meson anomalies , 2011, 1107.3559.
[72] K. J. Bae,et al. Effective interactions of axion supermultiplet and thermal production of axino dark matter , 2011, 1106.2452.
[73] P. Graf,et al. Thermal axion production in the primordial quark-gluon plasma , 2010, 1008.4528.
[74] P. Petreczky,et al. QCD Equation of State and Hadron Resonance Gas , 2009, 0912.2541.
[75] L. Hall,et al. Freeze-in production of FIMP dark matter , 2009, 0911.1120.
[76] J. Schaffner-Bielich,et al. A little inflation in the early universe at the QCD phase transition. , 2009, Physical review letters.
[77] Lorenzo Ubaldi. Effects of theta on the deuteron binding energy and the triple-alpha process , 2008, 0811.1599.
[78] Jihn E. Kim,et al. Axions and the Strong CP Problem , 2008, The Ideas of Particle Physics.
[79] A. Strumia,et al. Thermal production of gravitinos , 2007, hep-ph/0701104.
[80] Z. Fodor,et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics , 2006, Nature.
[81] J. Richardson,et al. Improved experimental limit on the electric dipole moment of the neutron. , 2006, Physical review letters.
[82] A. Mirizzi,et al. A new cosmological mass limit on thermal relic axions , 2005 .
[83] J. Gunion,et al. The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit , 2002, hep-ph/0207010.
[84] G. Zsembinszki,et al. Axion thermalization in the early universe , 2002, hep-ph/0203221.
[85] G. Miele,et al. A precision calculation of the effective number of cosmological neutrinos , 2001, astro-ph/0111408.
[86] J. Kuhn,et al. RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000, hep-ph/0004189.
[87] P. Lemieux,et al. Electroweak phase transition in two Higgs doublet models , 1996, hep-ph/9609240.
[88] Kiwoon Choi,et al. Hadronic axion window and the big bang nucleosynthesis , 1993, hep-ph/9306216.
[89] Carrington. Effective potential at finite temperature in the standard model. , 1992, Physical review. D, Particles and fields.
[90] Graciela B. Gelmini,et al. Cosmic abundances of stable particles: Improved analysis , 1991 .
[91] C. Gale,et al. Vector dominance model at finite temperature , 1991 .
[92] Yuan,et al. Calculation of screening in a hot plasma. , 1991, Physical review letters.
[93] Howard Georgi,et al. Manifesting the invisible axion at low energies , 1986 .
[94] M. Srednicki. Axion Couplings to Matter. 1. CP Conserving Parts , 1985 .
[95] Heinrich Leutwyler,et al. Chiral perturbation theory to one loop , 1984 .
[96] N. A. McDougall. On the U(1) problem , 1984 .
[97] E. Witten,et al. Parity Conservation in Quantum Chromodynamics , 1984 .
[98] Laurence F Abbott,et al. A cosmological bound on the invisible axion , 1983 .
[99] Michael Dine,et al. The Not So Harmless Axion , 1983 .
[100] John Preskill,et al. Cosmology of the invisible axion , 1983 .
[101] Michael Dine,et al. A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .
[102] A. Vainshtein,et al. Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .
[103] A. P. Zhitnitskii. Possible suppression of axion-hadron interactions , 1980 .
[104] Jihn E. Kim. Weak Interaction Singlet and Strong CP Invariance , 1979 .
[105] K. Fujikawa. Path Integral Measure for Gauge Invariant Fermion Theories , 1979 .
[106] J. Vermaseren,et al. Phenomenology of the new light Higgs boson search , 1978 .
[107] F. Wilczek. Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .
[108] S. Weinberg. A new light boson , 1978 .
[109] R. Peccei,et al. Some aspects of instantons , 1977 .
[110] R. Peccei,et al. CP Conservation in the Presence of Pseudoparticles , 1977 .
[111] G. Hooft. Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .
[112] S. Weinberg. The U(1) Problem , 1975 .
[113] J. Bell,et al. A PCAC puzzle: π0→γγ in the σ-model , 1969 .
[114] S. Adler. Axial vector vertex in spinor electrodynamics , 1969 .
[115] M. Drewes,et al. Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2021, Journal of Cosmology and Astroparticle Physics.
[116] R. Hagedorn. How We Got to QCD Matter from the Hadron Side: 1984 , 2016 .
[117] G. ’t Hooft,et al. Computation of the quantum effects due to a four-dimensional pseudoparticle , 2011 .
[118] M. Bellac. Thermal Field Theory: Collective excitations in a plasma , 1996 .
[119] Z. Berezhiani,et al. Primordial background of cosmological axions , 1992 .
[120] P. Giannone,et al. Primordial gravitational waves , 1991 .
[121] Weldon. Reformulation of finite-temperature dilepton production. , 1990, Physical review. D, Particles and fields.
[122] Heinrich Leutwyler,et al. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .
[123] R. Hagedorn. How we got to QCD matter from the hadron side by trial and error , 1985 .
[124] P. Goddard,et al. SOME ASPECTS OF INSTANTONS , 1980 .
[125] A. Zhitnitsky. On Possible Suppression of the Axion Hadron Interactions. (In Russian) , 1980 .
[126] J. Bell,et al. A PCAC puzzle: pi0-->gammagamma in the sigma-model , 1969 .