Thermal QCD Axions across Thresholds

[1]  Francesco D’Eramo,et al.  Thermal Axion Production at Low Temperatures: A Smooth Treatment of the QCD Phase Transition. , 2021, Physical review letters.

[2]  L. Leinson Impact of axions on the Cassiopea A neutron star cooling , 2021, Journal of Cosmology and Astroparticle Physics.

[3]  Fabrizio Rompineve,et al.  Dine-Fischler-Srednicki-Zhitnitsky axion in the CMB , 2021 .

[4]  B. Fields,et al.  The impact of new d(p,γ)3 rates on Big Bang Nucleosynthesis , 2021, Journal of Cosmology and Astroparticle Physics.

[5]  Francesco D’Eramo,et al.  Displaced new physics at colliders and the early universe before its first second , 2021, Journal of High Energy Physics.

[6]  G. Martinelli,et al.  Breakdown of Chiral Perturbation Theory for the Axion Hot Dark Matter Bound. , 2021, Physical review letters.

[7]  J. A. Dror,et al.  Cosmic axion background , 2021, Physical Review D.

[8]  M. Neubert,et al.  The low-energy effective theory of axions and ALPs , 2020, Journal of High Energy Physics.

[9]  M. Chala,et al.  Running in the ALPs , 2020, The European Physical Journal C.

[10]  A. Notari,et al.  Production of thermal axions across the electroweak phase transition , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  M. Drewes,et al.  Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2020, 2012.02726.

[12]  A. Melchiorri,et al.  New cosmological bounds on hot relics: axions and neutrinos , 2020, 2011.14704.

[13]  B. Fields,et al.  The Impact of New d(p,\gamma)He3 Rates on Big Bang Nucleosynthesis , 2020, 2011.13874.

[14]  K. Stöckel,et al.  The baryon density of the Universe from an improved rate of deuterium burning , 2020, Nature.

[15]  A. Notari,et al.  Cosmic imprints of XENON1T axions , 2020, Journal of Cosmology and Astroparticle Physics.

[16]  Masahide Yamaguchi,et al.  A precision calculation of relic neutrino decoupling , 2020, Journal of Cosmology and Astroparticle Physics.

[17]  P. Sikivie Invisible axion search methods , 2020, 2003.02206.

[18]  M. Giannotti,et al.  The landscape of QCD axion models , 2020, Physics Reports.

[19]  M. Burghoff,et al.  Measurement of the Permanent Electric Dipole Moment of the Neutron. , 2020, Physical review letters.

[20]  Vladyslav Shtabovenko,et al.  FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..

[21]  M. Drewes,et al.  Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model: the QED equation of state , 2019, Journal of Cosmology and Astroparticle Physics.

[22]  L. Verde,et al.  Tensions between the early and late Universe , 2019, Nature Astronomy.

[23]  Mark Halpern,et al.  CMB-S4 Science Case, Reference Design, and Project Plan , 2019, 1907.04473.

[24]  T. Fischer,et al.  Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung , 2019, Journal of Cosmology and Astroparticle Physics.

[25]  Benjamin Rose,et al.  Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics , 2019, 1903.04763.

[26]  A. Slosar,et al.  First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations , 2019, Nature Physics.

[27]  J. Bernal,et al.  Hot axions and the H0 tension , 2018, Journal of Cosmology and Astroparticle Physics.

[28]  K. Hamaguchi,et al.  Limit on the axion decay constant from the cooling neutron star in Cassiopeia A , 2018, Physical Review D.

[29]  K. Saikawa,et al.  Primordial gravitational waves, precisely: the role of thermodynamics in the Standard Model , 2018, 1803.01038.

[30]  R. Essig,et al.  Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle , 2018, Journal of High Energy Physics.

[31]  I. Irastorza,et al.  New experimental approaches in the search for axion-like particles , 2018, Progress in Particle and Nuclear Physics.

[32]  A. Notari,et al.  Observable Windows for the QCD Axion Through the Number of Relativistic Species. , 2018, Physical review letters.

[33]  M. Dine,et al.  Some remarks on anthropic approaches to the strong CP problem , 2018, Journal of High Energy Physics.

[34]  A. Tranberg,et al.  Nonperturbative Analysis of the Electroweak Phase Transition in the Two Higgs Doublet Model. , 2017, Physical review letters.

[35]  M. Drees,et al.  Dark matter production in an early matter dominated era , 2017, 1711.05007.

[36]  Zhaofeng Kang,et al.  On ultraviolet freeze-in dark matter during reheating , 2017, 1711.02556.

[37]  A. Chaudhuri,et al.  Electroweak phase transition and entropy release in the early universe , 2017, 1711.01801.

[38]  K. Olive,et al.  Enhancement of the dark matter abundance before reheating: Applications to gravitino dark matter , 2017, 1709.01549.

[39]  Chan Beom Park,et al.  Minimal flavor violation with axion-like particles , 2017, Journal of High Energy Physics.

[40]  K. Mimasu,et al.  The Higgs vacuum uplifted: revisiting the electroweak phase transition with a second Higgs doublet , 2017, 1705.09186.

[41]  J. Zupan,et al.  Minimal axion model from flavor , 2017 .

[42]  M. Laine,et al.  Basics of Thermal Field Theory , 2017, 1701.01554.

[43]  K. Hamaguchi,et al.  Flaxion: a minimal extension to solve puzzles in the standard model , 2016, Journal of High Energy Physics.

[44]  M. Mühlleitner,et al.  Strong first order electroweak phase transition in the CP-conserving 2HDM revisited , 2016, Journal of High Energy Physics.

[45]  K. Kanaya,et al.  Equation of state in (2+1)-flavor QCD with gradient flow , 2016, 1610.09518.

[46]  Adam G. Riess,et al.  The trouble with H0 , 2016, 1607.05617.

[47]  T. Fischer,et al.  Probing axions with the neutrino signal from the next Galactic supernova , 2016, 1605.08780.

[48]  Daniel Baumann,et al.  New Target for Cosmic Axion Searches. , 2016, Physical review letters.

[49]  Frederik Orellana,et al.  New developments in FeynCalc 9.0 , 2016, Comput. Phys. Commun..

[50]  Javier Pardo Vega,et al.  The QCD axion, precisely , 2015, 1511.02867.

[51]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[52]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[53]  C. DeTar,et al.  Electromagnetic effects on the light hadron spectrum , 2015, 1510.04997.

[54]  S. N. Ivanov,et al.  Revised experimental upper limit on the electric dipole moment of the neutron , 2015, 1509.04411.

[55]  D. Pleiter,et al.  Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED , 2015, 1508.06401.

[56]  F. Cyr-Racine,et al.  Sterile neutrino dark matter: Weak interactions in the strong coupling epoch , 2015, 1507.06655.

[57]  D. Pappadopulo,et al.  Freeze-In dark matter with displaced signatures at colliders , 2015, 1506.07532.

[58]  Scott Thomas,et al.  The hunt for the rest of the Higgs bosons , 2015, Journal of High Energy Physics.

[59]  Masaki Yamada,et al.  Observable dark radiation from a cosmologically safe QCD axion , 2015, 1504.04126.

[60]  M. Drees,et al.  The effects of QCD equation of state on the relic density of WIMP dark matter , 2015, 1503.03513.

[61]  D. Espriu,et al.  Axion-Higgs interplay in the two Higgs-doublet model , 2015, 1503.02953.

[62]  D. Pappadopulo,et al.  Multiverse dark matter: SUSY or axions , 2014, 1409.5123.

[63]  L. Althaus,et al.  Revisiting the axion bounds from the Galactic white dwarf luminosity function , 2014, 1406.7712.

[64]  H. Haber The Higgs data and the Decoupling Limit , 2013, 1401.0152.

[65]  M. Catelán,et al.  Neutrino and axion bounds from the globular cluster M5 (NGC 5904). , 2013, Physical review letters.

[66]  Wei Xue,et al.  Thermal axion production , 2013, 1310.6982.

[67]  S. Huber,et al.  A strong electroweak phase transition in the 2HDM after LHC8 , 2013, 1305.6610.

[68]  David E. Kaplan,et al.  New light species and the CMB , 2013, 1303.5379.

[69]  R. Petronzio,et al.  Leading isospin breaking effects on the lattice , 2013, 1303.4896.

[70]  E. Megías,et al.  The hadron resonance gas model: thermodynamics of QCD and Polyakov loop , 2012, 1207.7287.

[71]  M. Trott,et al.  Electroweak baryogenesis in two Higgs doublet models and B meson anomalies , 2011, 1107.3559.

[72]  K. J. Bae,et al.  Effective interactions of axion supermultiplet and thermal production of axino dark matter , 2011, 1106.2452.

[73]  P. Graf,et al.  Thermal axion production in the primordial quark-gluon plasma , 2010, 1008.4528.

[74]  P. Petreczky,et al.  QCD Equation of State and Hadron Resonance Gas , 2009, 0912.2541.

[75]  L. Hall,et al.  Freeze-in production of FIMP dark matter , 2009, 0911.1120.

[76]  J. Schaffner-Bielich,et al.  A little inflation in the early universe at the QCD phase transition. , 2009, Physical review letters.

[77]  Lorenzo Ubaldi Effects of theta on the deuteron binding energy and the triple-alpha process , 2008, 0811.1599.

[78]  Jihn E. Kim,et al.  Axions and the Strong CP Problem , 2008, The Ideas of Particle Physics.

[79]  A. Strumia,et al.  Thermal production of gravitinos , 2007, hep-ph/0701104.

[80]  Z. Fodor,et al.  The order of the quantum chromodynamics transition predicted by the standard model of particle physics , 2006, Nature.

[81]  J. Richardson,et al.  Improved experimental limit on the electric dipole moment of the neutron. , 2006, Physical review letters.

[82]  A. Mirizzi,et al.  A new cosmological mass limit on thermal relic axions , 2005 .

[83]  J. Gunion,et al.  The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit , 2002, hep-ph/0207010.

[84]  G. Zsembinszki,et al.  Axion thermalization in the early universe , 2002, hep-ph/0203221.

[85]  G. Miele,et al.  A precision calculation of the effective number of cosmological neutrinos , 2001, astro-ph/0111408.

[86]  J. Kuhn,et al.  RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000, hep-ph/0004189.

[87]  P. Lemieux,et al.  Electroweak phase transition in two Higgs doublet models , 1996, hep-ph/9609240.

[88]  Kiwoon Choi,et al.  Hadronic axion window and the big bang nucleosynthesis , 1993, hep-ph/9306216.

[89]  Carrington Effective potential at finite temperature in the standard model. , 1992, Physical review. D, Particles and fields.

[90]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[91]  C. Gale,et al.  Vector dominance model at finite temperature , 1991 .

[92]  Yuan,et al.  Calculation of screening in a hot plasma. , 1991, Physical review letters.

[93]  Howard Georgi,et al.  Manifesting the invisible axion at low energies , 1986 .

[94]  M. Srednicki Axion Couplings to Matter. 1. CP Conserving Parts , 1985 .

[95]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[96]  N. A. McDougall On the U(1) problem , 1984 .

[97]  E. Witten,et al.  Parity Conservation in Quantum Chromodynamics , 1984 .

[98]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[99]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[100]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[101]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[102]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[103]  A. P. Zhitnitskii Possible suppression of axion-hadron interactions , 1980 .

[104]  Jihn E. Kim Weak Interaction Singlet and Strong CP Invariance , 1979 .

[105]  K. Fujikawa Path Integral Measure for Gauge Invariant Fermion Theories , 1979 .

[106]  J. Vermaseren,et al.  Phenomenology of the new light Higgs boson search , 1978 .

[107]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[108]  S. Weinberg A new light boson , 1978 .

[109]  R. Peccei,et al.  Some aspects of instantons , 1977 .

[110]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[111]  G. Hooft Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .

[112]  S. Weinberg The U(1) Problem , 1975 .

[113]  J. Bell,et al.  A PCAC puzzle: π0→γγ in the σ-model , 1969 .

[114]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .

[115]  M. Drewes,et al.  Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2021, Journal of Cosmology and Astroparticle Physics.

[116]  R. Hagedorn How We Got to QCD Matter from the Hadron Side: 1984 , 2016 .

[117]  G. ’t Hooft,et al.  Computation of the quantum effects due to a four-dimensional pseudoparticle , 2011 .

[118]  M. Bellac Thermal Field Theory: Collective excitations in a plasma , 1996 .

[119]  Z. Berezhiani,et al.  Primordial background of cosmological axions , 1992 .

[120]  P. Giannone,et al.  Primordial gravitational waves , 1991 .

[121]  Weldon Reformulation of finite-temperature dilepton production. , 1990, Physical review. D, Particles and fields.

[122]  Heinrich Leutwyler,et al.  Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .

[123]  R. Hagedorn How we got to QCD matter from the hadron side by trial and error , 1985 .

[124]  P. Goddard,et al.  SOME ASPECTS OF INSTANTONS , 1980 .

[125]  A. Zhitnitsky On Possible Suppression of the Axion Hadron Interactions. (In Russian) , 1980 .

[126]  J. Bell,et al.  A PCAC puzzle: pi0-->gammagamma in the sigma-model , 1969 .