Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System
暂无分享,去创建一个
[1] Karline Soetaert,et al. Solving Ordinary Differential Equations in R , 2012 .
[2] Christopher K. R. T. Jones,et al. Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .
[3] John Guckenheimer,et al. Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..
[4] L. Peletier,et al. Nonlinear diffusion in population genetics , 1977 .
[5] Christopher Jones,et al. Stability of the travelling wave solution of the FitzHugh-Nagumo system , 1984 .
[6] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[7] N. Kopell,et al. Construction of the Fitzhugh-Nagumo Pulse Using Differential Forms , 1991 .
[8] D. Aronson,et al. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .
[9] J. Guckenheimer,et al. HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.
[10] John A. Feroe,et al. Double Impulse Solutions in Nerve Axon Equations , 1982 .
[11] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[12] Jozsi Z. Jalics,et al. A novel canard-based mechanism for mixed-mode oscillations in a neuronal model , 2008, 0804.0829.
[13] Edgar Knobloch,et al. Unfolding a Tangent Equilibrium-to-Periodic Heteroclinic Cycle , 2009, SIAM J. Appl. Dyn. Syst..
[14] Bernd Krauskopf,et al. Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .
[15] John Guckenheimer,et al. Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..
[16] Pierre Gaspard,et al. Complexity in the bifurcation structure of homoclinic loops to a saddle-focus , 1997 .
[17] Christopher K. R. T. Jones,et al. Invariant manifolds and singularly perturbed boundary value problems , 1994 .
[18] B. Sandstede,et al. Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .
[19] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[20] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[21] Peter Szmolyan,et al. Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .
[22] G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .
[23] John Guckenheimer,et al. A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.
[24] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[25] M. Koper. Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram , 1995 .
[26] M. Krupa,et al. Relaxation Oscillation and Canard Explosion , 2001 .
[27] N. Kopell,et al. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.
[28] S. Hastings. ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .
[29] Edgar Knobloch,et al. When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..
[30] Bernd Krauskopf,et al. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.
[31] J. Rubin,et al. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.
[32] Horacio G. Rotstein,et al. Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..