Kawamata boundedness for Fano threefolds and the Graded Ring Database
暂无分享,去创建一个
[1] Andrea Petracci. Some examples of non-smoothable Gorenstein Fano toric threefolds , 2018, Mathematische Zeitschrift.
[2] Inverting Reid's exact plurigenera formula , 1989 .
[3] J. Chen,et al. On Quasismooth Weighted Complete Intersections , 2009, 0908.1439.
[4] Stavros Argyrios Papadakis. Type II unprojection , 2005 .
[5] A. Corti,et al. Quantum periods for 3-dimensional Fano manifolds , 2013, 1303.3288.
[6] F. Campana,et al. Projective threefolds containing a smooth rational surface with ample normal bundle. , 1993 .
[7] M. I. Qureshi,et al. Fano 3-folds in format, Tom and Jerry , 2017, European Journal of Mathematics.
[8] Gavin Brown,et al. A Database of Polarized K3 Surfaces , 2007, Exp. Math..
[9] B. M. Fulk. MATH , 1992 .
[10] A. Kasprzyk,et al. Gorenstein Formats, Canonical and Calabi–Yau Threefolds , 2014, Exp. Math..
[11] Yuri Prokhorov. $\Bbb Q$-Fano threefolds of large Fano index. I. , 2008, Documenta Mathematica.
[12] The versal deformation of an isolated toric Gorenstein singularity , 1994, alg-geom/9403004.
[13] Miles Reid,et al. Kustin–Miller unprojection without complexes , 2004 .
[14] Miles Reid,et al. Young person''s guide to canonical singularities , 1985 .
[15] Kaori Suzuki. On Fano indicies of Q-Fano 3-folds , 2002, math/0210309.
[16] J. Kollár,et al. Boundedness of canonical Q-Fano 3-folds , 2000 .
[17] K. Altmann. Explicit Birational Geometry of 3-Folds: One parameter families containing three dimensional toric Gorenstein singularities , 1996, alg-geom/9609006.
[18] Enrico Fatighenti,et al. Hodge Numbers and Deformations of Fano 3-Folds , 2017, Documenta Mathematica.
[19] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[20] Jeffrey H. Meyerson,et al. The Go Programming Language , 2014, IEEE Softw..
[21] Miles Reid,et al. Graded rings and birational geometry , 2000 .
[22] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[23] V. A. Iskovskih. Fano 3-FOLDS. I , 1977 .
[24] I. Karzhemanov. Fano threefolds with canonical Gorenstein singularities and big degree , 2009, 0908.1671.
[25] N. Young. Surveys in geometry and number theory : reports on contemporary Russian mathematics , 2007 .
[26] Michele Nicolussi. On terminal Fano 3-folds with 2-torus action , 2014, 1803.04050.
[27] Gavin Brown,et al. Graded rings and special K3 surfaces , 2006 .
[28] A. Kasprzyk. Canonical Toric Fano Threefolds , 2008, Canadian Journal of Mathematics.
[29] Hyperelliptic and trigonal Fano threefolds , 2004, math/0406143.
[30] Gavin Brown,et al. Computing certain Fano 3-folds , 2007 .
[31] A. Corti,et al. Mirror Symmetry and Fano Manifolds , 2012, 1212.1722.
[32] Shigeru Mukai,et al. Classification of Fano 3-folds with B2≥2 , 1981 .
[33] Stavros A. Papadakis. Kustin-Miller unprojection with complexes , 2000 .
[34] Takeshi Sano. Classification of non-Gorenstein Q-Fano d-folds of Fano index greater than d − 2 , 1996, Nagoya Mathematical Journal.
[35] Tom Coates,et al. Maximally mutable Laurent polynomials , 2021, Proceedings of the Royal Society A.
[36] MAT , 2020, Encyclopedic Dictionary of Archaeology.
[37] M. Reid,et al. Cascades of projections from log del Pezzo surfaces , 2004 .
[38] Hiromichi Takagi. On classification of ℚ-fano 3-folds of Gorenstein index 2. II , 2002, Nagoya Mathematical Journal.
[39] Birational Geometry of 3-fold Mori Fibre Spaces , 2003, math/0307301.
[40] G. Fitzgerald,et al. 'I. , 2019, Australian journal of primary health.
[41] Gavin Brown,et al. Four-Dimensional Projective Orbifold Hypersurfaces , 2015, Exp. Math..
[42] János Kollár,et al. Fano Hypersurfaces in Weighted Projective 4-Spaces , 2000, Exp. Math..
[43] 野村栄一,et al. 2 , 1900, The Hatak Witches.
[44] P. Couturier. Japan , 1988, The Lancet.
[45] M. Reid,et al. Weighted Grassmannians , 2002, math/0206011.
[46] N. Ilten,et al. Hilbert Schemes and Toric Degenerations for Low Degree Fano Threefolds , 2012, 1202.0510.
[47] C. Birkar. Singularities of linear systems and boundedness of Fano varieties , 2016, Annals of Mathematics.
[48] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[49] M. Kreuzer,et al. Classification of Reflexive Polyhedra in Three Dimensions , 1998 .
[50] R. Tennant. Algebra , 1941, Nature.
[51] Takeshi Sano. On classification of non-Gorenstein $Q$-Fano $3$-folds of Fano index $1$ , 1995 .
[52] Kei-ichi Watanabe,et al. On graded rings, I , 1978 .
[53] B. Szendrői,et al. Constructing projective varieties in weighted flag varieties , 2010, 1008.1947.
[54] N. Ilten. Versal deformations and local Hilbert schemes , 2011, 1107.2416.
[55] M. I. Qureshi,et al. Fano 3-folds in P 2 × P 2 format , 2017 .
[56] Kiyohiko Takeuchi. Some birational maps of Fano 3-folds , 1989 .
[57] Hiromichi Takagi,et al. On Classification of Q-Fano 3-folds of Gorenstein Index 2 and Fano Index 1/2 , 1999, math/9905068.
[58] A. Kasprzyk,et al. Minkowski Polynomials and Mutations , 2012, 1212.1785.
[59] Y. Kawamata. On the plurigenera of minimal algebraic 3-folds withK≋0 , 1986 .
[60] I. Karzhemanov. On Fano threefolds with canonical Gorenstein singularities , 2008, 0805.3927.
[61] Gavin Brown,et al. Fano 3-folds with divisible anticanonical class , 2007 .
[62] Andrea Petracci. On deformations of toric Fano varieties , 2019, 1912.01538.
[63] M. Reid,et al. Explicit birational geometry of 3-folds , 2000 .
[64] M. Reid,et al. Fano 3-folds in codimension 4, Tom and Jerry. Part I , 2010, Compositio Mathematica.
[65] Tom Ducat,et al. Constructing Fano 3-folds from cluster varieties of rank 2 , 2018, Compositio Mathematica.
[66] Shigefumi Mori,et al. Flip theorem and the existence of minimal models for 3-folds , 1988 .
[67] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[68] A. Kustin,et al. Constructing big Gorenstein ideals from small ones , 1983 .