A reversible multiscale integration method

A multiscale, time reversible method for computing the effective slow behavior of systems of highly oscillatory ordinary differential equations is presented. The proposed method relies on correctly ...

[1]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model , 2004 .

[2]  A. Mielke Analysis, modeling and simulation of multiscale problems , 2006 .

[3]  J. M. Sanz-Serna,et al.  Heterogeneous Multiscale Methods for Mechanical Systems with Vibrations , 2010, SIAM J. Sci. Comput..

[4]  R. Scheid The Accurate Numerical Solution of Highly Oscillatory Ordinary Differential Equations , 1983 .

[5]  David Cohen,et al.  Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review , 2006 .

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[7]  Gil Ariel,et al.  Multiscale Computations for Highly Oscillatory Problems , 2009, CSE 2009.

[8]  Björn Engquist,et al.  Numerical Multiscale Methods for Coupled Oscillators , 2009, Multiscale Model. Simul..

[9]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[10]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[11]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[12]  Eric Vanden Eijnden Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .

[13]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[14]  Mark Levi,et al.  Geometry and physics of averaging with applications , 1999 .

[15]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[16]  Eric Vanden-Eijnden,et al.  NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ , 2003 .

[17]  Björn Engquist,et al.  Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .

[18]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[19]  G. Dahlquist Convergence and stability in the numerical integration of ordinary differential equations , 1956 .

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[21]  Richard Tsai,et al.  Multiscale Methods for Stiff and Constrained Mechanical Systems , 2009 .

[22]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale systems with applications to Lorenz 96 model , 2004 .

[23]  S. SIAMJ.,et al.  FOURTH ORDER CHEBYSHEV METHODS WITH RECURRENCE RELATION∗ , 2002 .

[24]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[25]  Heinz-Otto Kreiss,et al.  Problems with different time scales , 1992, Acta Numerica.

[26]  H. Kreiss Difference Methods for Stiff Ordinary Differential Equations , 1978 .

[27]  J. M. Sanz-Serna,et al.  Modulated Fourier expansions and heterogeneous multiscale methods , 2009 .

[28]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[29]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[30]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[31]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[32]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[33]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[34]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[35]  Kyle A. Gallivan,et al.  Automatic methods for highly oscillatory ordinary differential equations , 1982 .

[36]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .