Generalized Preferential Attachment : Towards Realistic Socio-Semantic Network Models

The mechanism of preferential attachment underpins most recent social network formation models. Yet few authors attempt to check or quantify assumptions on this mechanism. We call generalized preferential attachment any kind of preference to interact with other agents with respect to any node property. We introduce tools for measuring empirically and characterizing comprehensively such phenomena, consequently suggest significant implications for model design, and apply these tools to a socio-semantic network of scientific collaborations, investigating in particular homophilic behavior. This opens the way to a whole class of realistic and credible social network morphogenesis models.

[1]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[2]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[3]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[5]  G. Caldarelli,et al.  Assortative model for social networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  B Skyrms,et al.  A dynamic model of social network formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[8]  W. Powell,et al.  Network Dynamics and Field Evolution: The Growth of Interorganizational Collaboration in the Life Sciences1 , 2005, American Journal of Sociology.

[9]  E. Levanon,et al.  Preferential attachment in the protein network evolution. , 2003, Physical review letters.

[10]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  S. Redner Citation statistics from 110 years of physical review , 2005, physics/0506056.

[12]  M E J Newman,et al.  Identity and Search in Social Networks , 2002, Science.

[13]  Andrea Rinaldo,et al.  Network structures from selection principles. , 2004, Physical review letters.

[14]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[15]  Jean-Benoît Zimmermann,et al.  Émergence, formation et dynamique des réseaux. Modèles de la morphogenèse , 2003 .

[16]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jean-Loup Guillaume,et al.  Bipartite structure of all complex networks , 2004, Inf. Process. Lett..

[18]  V. Batagelj,et al.  Comparing resemblance measures , 1995 .

[19]  B. Söderberg General formalism for inhomogeneous random graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Camille Roth,et al.  Binding Social and Cultural Networks: A Model , 2003, nlin/0309035.

[21]  Paul Bourgine,et al.  Epistemic Communities: Description and Hierarchic Categorization , 2004, ArXiv.

[22]  M Girvan,et al.  Structure of growing social networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Z. Neda,et al.  Measuring preferential attachment in evolving networks , 2001, cond-mat/0104131.

[24]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[25]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  S. N. Dorogovtsev,et al.  Self-organization of collaboration networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Vinko Zlatic,et al.  Preferential attachment with information filtering—node degree probability distribution properties , 2005 .

[28]  T. Snijders The statistical evaluation of social network dynamics , 2001 .

[29]  Parongama Sen,et al.  Modulated scale-free network in Euclidean space. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Christos H. Papadimitriou,et al.  Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet , 2002, ICALP.

[31]  Roger Guimerà,et al.  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance , 2005, Science.

[32]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..