Maximum Planar Subgraphs in Dense Graphs

Kuuhn, Osthus and Taraz showed that for each γ >0 there exists C such that any n-vertex graph with minimum degree γn contains a planar subgraph with at least 2n - C edges. We find the optimum value of C for all γ< 1/2 and sufficiently large n

[1]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[2]  Yoshiharu Kohayakawa,et al.  An Extension of the Blow-up Lemma to Arrangeable Graphs , 2013, SIAM J. Discret. Math..

[3]  Daniela Kühn,et al.  Spanning triangulations in graphs , 2005, J. Graph Theory.

[4]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[5]  P. Erdös On the structure of linear graphs , 1946 .

[6]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[7]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[8]  Daniela Kühn,et al.  Large planar subgraphs in dense graphs , 2005, J. Comb. Theory, Ser. B.

[9]  Richard H. Schelp,et al.  Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.

[10]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.