Synthesis, characterisation and properties of As-monohalogenated dibenzoarsocines S(C6H4S)2AsHal (Hal = Cl, Br, I) : A study of the transannular interaction S→As

Addition of AsCl3 to S(C6H4SH)2 in benzene solution leads to the formation of the stable compound S(C6H4S)2AsCl (1). The S(C6H4S)2AsHal [Hal = Br (2), I (3)] compounds have been synthesised by halogen exchange from 1 and the corresponding potassium halide. X-ray structure determinations of complexes 1–3 reveal that the arsenic atom acts as an acceptor atom exhibiting an intramolecular transannular interaction with the thioether-like sulfur atom. The geometry of the tetracoordinate As atom in the title compounds is described as distorted pseudo-trigonal-bipyramidal with a stereochemically active lone pair and 66–63 % trigonal-bipyramidal character. The transannular interaction influences the conformation of the dibenzotrithiarsocine system, adopting the central eight-membered ring with a boat–boat conformation and Cs symmetry.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

[1]  V. García-Montalvo,et al.  The importance of the transannular secondary bonding strength in the molecular structures of metallocanes of type [X(CH2CH2Y)2MRR′] and [X(CH2CH2Y)2M′R] (M = Ge(IV), Sn(IV), Pb(IV), M′ = As(III), Sb(III) and Bi(III); X = NR″, O, S; Y = O, S) , 2005 .

[2]  A. Vela,et al.  Study of the D⇄Sb (D = O, S) Transannular Interaction in Sb‐Monohalogenated Dibenzostibocines − An Experimental and Theoretical Study , 2003 .

[3]  W. Levason,et al.  Arsenic(III) halide complexes with acyclic and macrocyclic thio- and selenoether coligands: synthesis and structural properties. , 2002, Inorganic chemistry.

[4]  W. Levason,et al.  Synthesis and structural properties of the first macrocyclic selenoether complex of arsenic(III): a rare example of exo and endo coordination in a single species. , 2001, Journal of the American Chemical Society.

[5]  D. Häussinger,et al.  Synthesis, Structures, and Reactions of Sulfur-Rich Nickel and Platinum Complexes with [MS3] and [MNS2] Cores , 1999 .

[6]  G. Rihs,et al.  Neutral Pentacoordinate and Hexacoordinate Germanium(IV) Complexes: Valence Expansion At Gemanium By Transannular Bonding Of Selenium in an Eight-Membered Ring1 , 1999 .

[7]  R. O. Day,et al.  Chloro- and Fluoro-Substituted Phosphites, Phosphates, and Phosphoranes Exhibiting Sulfur and Oxygen Coordination(1). , 1999, Inorganic chemistry.

[8]  R. O. Day,et al.  Molecular Structures of Three-, Four-, and Five-Coordinate Phosphorus Compounds Containing Salicylate Ligands(1). , 1998, Inorganic chemistry.

[9]  R. O. Day,et al.  Pentacoordination and Pseudopentacoordination via Sulfur Donor Action in Cyclic Phosphates and Phosphites1 , 1997 .

[10]  S. Hernández-Ortega,et al.  Synthesis and characterization of oxa and thia metallocanes substituted with phosphorodithioate ligands and crystal and molecular structure of 1,3,6-trithia-2-arsocane dimethylphosphorodithioate , 1996 .

[11]  U. Kolb,et al.  Heterocyclic Systems Containing Tin(IV). 11. Stannocanes Cl/Br/I/Me-(Me)Sn(SCH2CH2)2X (X = O, S, NMe): Synthesis and Structural and Vibrational Data. A semiquantitative Investigation of the Energy Gain of Pentacoordinate Tin in Terms of Frontier Orbitals , 1994 .

[12]  N. Burford,et al.  The First Cycloaddition Reactions of Dimeric Arsenium Cations , 1994 .

[13]  R. Toscano,et al.  Coordinating ability of the heterocycles 1,3‐dithia‐2‐arsa‐ and stiba‐cyclopentanes. Part III. Dithioacid and dithiocarbamate complexes containing a free functional group. Crystal structure of 2‐pyrrolidonedithiocarbamate of 1,3‐dithia‐arsa‐cyclopentane , 1993 .

[14]  J. Richardson,et al.  Aza- and thiaarsolidinium cations: novel structural features for carbene analogues , 1992 .

[15]  A. Rheingold,et al.  Arsenic-sulfur heterocycle formation via metal coordination. Synthesis and molecular structure of cyclo-(CH3AsS)n (n = 3, 4), [(CO)3Mo][.eta.3-cyclo-(CH3As)6S3], and the triple-decker-sandwich complex [.eta.5-(C5H5)2Mo2(.eta.2,.mu.-As3)(.eta.2,.mu.-AsS)] , 1990 .

[16]  U. Müller,et al.  PPh4[As3S3Cl4] und PPh4[As3S3Br4] , 1988 .

[17]  J. Dunitz,et al.  Chemical reaction paths. 7. Pathways for SN2 and SN3 substitution at tin(IV) , 1981 .

[18]  M. Dräger Über Arsen-haltige Heterocyclen, I. Molekül- und Kristallstruktur von 2-Chlor-1,3,6,2-trithiarsaocan , 1974 .

[19]  A. W. Cordes,et al.  Crystal and molecular structure of diphenyldiarsenic trisulfide. Five-membered arsenic-sulfur ring compound , 1972 .

[20]  Andrea Zickgraf,et al.  AS(III)/SB(III)/BI(III)-HALIDE DISTANCES AND STRETCHING VIBRATIONS. AN APPLICATION OF THE VARSHNI RELATIONSHIP UPON HYPERVALENT GROUP 15 COMPOUNDS , 1998 .

[21]  S. Hernández-Ortega,et al.  Conformational trends in arsocane dithiophosphinates X(CH2CH2S)2AsS2PR2(X = O or S; R = Me, Et or Ph) , 1996 .

[22]  M. Estrada,et al.  1-Oxa-4,6-Dithia-5-Arsocane and 1,3,6-Trithia-2-Arsocane Dithiocarbamates Competition Between Transannular and Exocyclic Secondary Bonding to Arsenic , 1995 .

[23]  M. Drew,et al.  Toluene-3,4-dithiol (H2tdt) complexes of group 5B halides. Observations of lone-pair stereochemical activity and redox behaviour. Crystal and molecular structures of [AsCl(tdt)] and [PPh4][Sb(tdt)3] , 1985 .

[24]  M. Dräger Über Arsen‐haltige Heterocyclen. II. Molekül‐ und Kristallstruktur von 5‐Chlor‐1‐oxa‐4,6‐dithia‐5‐arsaocan , 1975 .

[25]  N. Alcock Secondary Bonding to Nonmetallic Elements , 1972 .