Mapping Impervious Surface Distribution with the Integration of Landsat TM and QuickBird Images in a Complex Urban–Rural Frontier in Brazil

[1]  P. Dare Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas , 2005 .

[2]  F. J. García-Haro,et al.  Linear spectral mixture modelling to estimate vegetation amount from optical spectral data , 1996 .

[3]  T. Minor,et al.  Detecting and discriminating impervious cover with high-resolution IKONOS data using principal component analysis and morphological operators , 2003 .

[4]  Jürgen Symanzik,et al.  Effects of urbanization on the aquatic fauna of the Line Creek watershed, Atlanta—a satellite perspective , 2003 .

[5]  E. Terrence Slonecker,et al.  Remote sensing of impervious surfaces: A review , 2001 .

[6]  C. Arnold,et al.  IMPERVIOUS SURFACE COVERAGE: THE EMERGENCE OF A KEY ENVIRONMENTAL INDICATOR , 1996 .

[7]  M. Zug,et al.  Pollution wash-off modelling on impervious surfaces : Calibration, validation, transposition , 1999 .

[8]  S. Goetz,et al.  IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region , 2003 .

[9]  Changshan Wu,et al.  Subpixel Imperviousness Estimation with IKONOS Imagery: An Artificial Neural Network Approach , 2007 .

[10]  R. Congalton A Quantitative Method to Test for Consistency and Correctness in Photointerpretation , 1983 .

[11]  George Xian,et al.  Quantifying Multi-temporal Urban Development Characteristics in Las Vegas from Landsat and ASTER Data , 2008 .

[12]  Peng Gong,et al.  Integrated shadow removal based on photogrammetry and image analysis , 2005 .

[13]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[14]  D. Lu,et al.  Extraction of urban impervious surfaces from an IKONOS image , 2009 .

[15]  T. Esch,et al.  Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data , 2009 .

[16]  M. Batistella,et al.  A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon. , 2008, Photogrammetric engineering and remote sensing.

[17]  D. Lu,et al.  Residential population estimation using a remote sensing derived impervious surface approach , 2006 .

[18]  P. Sutton,et al.  Paving the planet: impervious surface as proxy measure of the human ecological footprint , 2009 .

[19]  Bunkei Matsushita,et al.  A pre-screened and normalized multiple endmember spectral mixture analysis for mapping impervious surface area in Lake Kasumigaura Basin, Japan , 2010 .

[20]  D. Lu,et al.  Use of impervious surface in urban land-use classification , 2006 .

[21]  Dengsheng Lu,et al.  Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research , 2002 .

[22]  M. Cochrane Linear mixture model classification of burned forests in the Eastern Amazon , 1998 .

[23]  Alan T. Murray,et al.  A cokriging method for estimating population density in urban areas , 2005, Comput. Environ. Urban Syst..

[24]  D. Lu,et al.  Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA , 2006 .

[25]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[26]  Changshan Wu,et al.  Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery , 2004 .

[27]  Dengsheng Lu,et al.  Impervious surface mapping with Quickbird imagery , 2011, International journal of remote sensing.

[28]  G. Xian,et al.  Mapping impervious surfaces using classification and regression tree algorithm , 2007 .

[29]  C. Small Estimation of urban vegetation abundance by spectral mixture analysis , 2001 .

[30]  Laurentius Ambu,et al.  Unhealthy travelers present challenges to sustainable primate ecotourism. , 2010, Travel medicine and infectious disease.

[31]  Limin Yang,et al.  An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery , 2003 .

[32]  L.L.F. Janssen,et al.  Accuracy assessment of satellite derived land - cover data : a review , 1994 .

[33]  Changshan Wu,et al.  Quantifying high‐resolution impervious surfaces using spectral mixture analysis , 2009 .

[34]  J. R. Jensen,et al.  Effectiveness of Subpixel Analysis in Detecting and Quantifying Urban Imperviousness from Landsat Thematic Mapper Imagery , 1999 .

[35]  Yuyu Zhou,et al.  The SPLIT and MASC Models for Extraction of Impervious Surface Areas from Multiple Remote Sensing Data , 2007 .

[36]  Ann M Swartz,et al.  Toward quantifying the usage costs of human immunity: Altered metabolic rates and hormone levels during acute immune activation in men , 2010, American journal of human biology : the official journal of the Human Biology Council.

[37]  J. Weeks,et al.  Revealing the Anatomy of Cities through Spectral Mixture Analysis of Multispectral Satellite Imagery: A Case Study of the Greater Cairo Region, Egypt. , 2001 .

[38]  Daniel L. Civco,et al.  Quantifying and Describing Urbanizing Landscapes in the Northeast United States , 2002 .

[39]  Sachio Kubo,et al.  Appraising the anatomy and spatial growth of the Bangkok Metropolitan area using a vegetation-impervious-soil model through remote sensing , 2001 .

[40]  J. C. Taylor,et al.  Sensitivity of mixture modelling to end‐member selection , 2003 .

[41]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[42]  D. Lu,et al.  Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery , 2004 .

[43]  R. Nemani,et al.  Global Distribution and Density of Constructed Impervious Surfaces , 2007, Sensors.

[44]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[45]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[46]  Alan T. Murray,et al.  Estimating impervious surface distribution by spectral mixture analysis , 2003 .

[47]  M. Sunshine,et al.  Spectral Analysis for Earth Science : Investigations Using Remote Sensing Data , 2013 .

[48]  M. Batistella,et al.  Linear mixture model applied to Amazonian vegetation classification , 2003 .

[49]  Austin Troy,et al.  Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study , 2009 .

[50]  J. Harbor A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology , 1994 .

[51]  H. Eakin,et al.  Perceptions of risk and adaptation: Coffee producers, market shocks, and extreme weather in Central America and Mexico , 2010 .

[52]  Alan T. Murray,et al.  Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data , 2000 .

[53]  C. Small Multitemporal analysis of urban reflectance , 2002 .

[54]  M. Bauer,et al.  Estimating and Mapping Impervious Surface Area by Regression Analysis of Landsat Imagery , 2007 .

[55]  Xuefei Hu,et al.  Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. , 2009 .

[56]  Christopher Small,et al.  The Landsat ETM+ spectral mixing space , 2004 .

[57]  Eduardo S. Brondizio,et al.  AGRICULTURA DE PEQUENA ESCALA E SUAS IMPLICAÇÕES NA TRANSIÇÃO AGROECOLÓGICA NA AMAZÔNIA BRASILEIRA , 2010 .

[58]  E. Moran Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery. , 2010, Photogrammetric engineering and remote sensing.

[59]  Limin Yang,et al.  Urban Land-Cover Change Detection through Sub-Pixel Imperviousness Mapping Using Remotely Sensed Data , 2003 .

[60]  M. Ridd Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities , 1995 .

[61]  Dengsheng Lu,et al.  Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images , 2010, Journal of applied remote sensing.

[62]  Vinod K. Lohani,et al.  CONSTRUCTING A PROBLEM SOLVING ENVIRONMENT TOOL FOR HYDROLOGIC ASSESSMENT OF LAND USE CHANGE , 2002 .

[63]  Liming Jiang,et al.  Quantifying Sub-pixel Urban Impervious Surface through Fusion of Optical and InSAR Imagery , 2009 .

[64]  Alan T. Murray,et al.  Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques , 2002 .

[65]  Yeqiao Wang,et al.  A SPLIT Model for Extraction of Subpixel Impervious Surface Information , 2004 .

[66]  John R. Weeks,et al.  Measuring the Physical Composition of Urban Morphology Using Multiple Endmember Spectral Mixture Models , 2003 .

[67]  O. Dikshit,et al.  Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh , 2001 .

[68]  S. M. Jong,et al.  Improving the results of spectral unmixing of Landsat thematic mapper imagery by enhancing the orthogonality of end-members , 2000 .

[69]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[70]  George Xian,et al.  Assessments of urban growth in the Tampa Bay watershed using remote sensing data , 2005 .

[71]  P. Shi,et al.  Shadow information recovery in urban areas from very high resolution satellite imagery , 2007 .

[72]  Catherine M. Tucker Private Goods and Common Property: Pottery Production in a Honduran Lenca Community , 2010 .

[73]  T. Schueler The importance of imperviousness , 1995 .

[74]  Elizabeth Brabec,et al.  Impervious Surfaces and Water Quality: A Review of Current Literature and Its Implications for Watershed Planning , 2002 .

[75]  Xuefei Hu,et al.  Estimating impervious surfaces using linear spectral mixture analysis with multitemporal ASTER images , 2009 .

[76]  Russell Congalton,et al.  Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition , 1998 .

[77]  Scott L. Powell,et al.  Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972–2006 , 2007 .

[78]  Qihao Weng,et al.  Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: a comparison , 2008 .

[79]  Jeffrey T. Walton,et al.  Assessment of 2001 NLCD Percent Tree and Impervious Cover Estimates , 2009 .