What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?

This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicate that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.

[1]  Matthew Baker,et al.  Extraction of hydrological proximity measures from DEMs using parallel processing , 2011, Environ. Model. Softw..

[2]  Philip Jordan,et al.  Evaluation of a surface hydrological connectivity index in agricultural catchments , 2013, Environ. Model. Softw..

[3]  Jin Teng,et al.  A GIS‐Based Tool for Spatial and Distributed Hydrological Modelling: CLASS Spatial Analyst , 2008, Trans. GIS.

[4]  Pamella Sarah Aishlin,et al.  GROUNDWATER RECHARGE ESTIMATION USING CHLORIDE MASS BALANCE DRY CREEK EXPERIMENTAL WATERSHED , 2006 .

[5]  Liping Di,et al.  DEM Explorer: An online interoperable DEM data sharing and analysis system , 2012, Environ. Model. Softw..

[6]  Michael E. Hodgson,et al.  Effects of lidar post‐spacing and DEM resolution to mean slope estimation , 2009, Int. J. Geogr. Inf. Sci..

[7]  Xiaoye Liu,et al.  Airborne LiDAR for DEM generation: some critical issues , 2008 .

[8]  John S. Kimball,et al.  Automated upscaling of river networks for macroscale hydrological modeling , 2008 .

[9]  J. Seibert,et al.  Effects of DEM resolution on the calculation of topographical indices: TWI and its components , 2007 .

[10]  Vijay P. Singh,et al.  Hydrological Simulation Program - Fortran (HSPF). , 1995 .

[11]  Terry J. Day Observed mixing lengths in mountain streams , 1977 .

[12]  Francisco Olivera,et al.  Extracting Hydrologic Information from Spatial Data for HMS Modeling , 2001 .

[13]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[14]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[15]  Larry W. Moore,et al.  Hydrological simulation of Tennessee's North Reelfoot Creek watershed , 1991 .

[16]  D. Montgomery,et al.  Digital elevation model grid size, landscape representation, and hydrologic simulations , 1994 .

[17]  Jessica J. Mitchell,et al.  Errors in LiDAR-derived shrub height and crown area on sloped terrain , 2011 .

[18]  Wolfgang Schwanghart,et al.  Fuzzy delineation of drainage basins through probabilistic interpretation of diverging flow algorithms , 2012, Environ. Model. Softw..

[19]  M. Seyfried,et al.  Scale and the Nature of Spatial Variability: Field Examples Having Implications for Hydrologic Modeling , 1995 .

[20]  Yingkui Li,et al.  Assessing resolution and source effects of digital elevation models on automated floodplain delineation: A case study from the Camp Creek Watershed, Missouri , 2012 .

[21]  Jessica J. Mitchell,et al.  Small-footprint Lidar Estimations of Sagebrush Canopy Characteristics , 2011 .

[22]  Naresh Pai,et al.  A geospatial tool for delineating streambanks , 2013, Environ. Model. Softw..

[23]  André Fonseca,et al.  Watershed model parameter estimation and uncertainty in data-limited environments , 2014, Environ. Model. Softw..

[24]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[25]  Stefan Kienzle,et al.  The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives , 2004, Trans. GIS.

[26]  Charles J Vörösmarty,et al.  Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error , 2001 .

[27]  Lindell Ormsbee,et al.  Effect of Digital Elevation Model (DEM) Resolution on the Hydrological and Water Quality Modeling , 2006 .

[28]  D. Legates,et al.  Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation , 1999 .

[29]  B Jacob,et al.  Geographic Database, Reynolds Creek Experimental Watershed, Idaho, United States , 2001 .

[30]  David G. Tarboton,et al.  On the extraction of channel networks from digital elevation data , 1991 .

[31]  Eric F. Wood,et al.  Effects of Digital Elevation Model Accuracy on Hydrologic Predictions , 2000 .

[32]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[33]  Rupesh Shrestha,et al.  A Slope-based Method for Matching Elevation Surfaces , 2011 .

[34]  Fan-Rui Meng,et al.  Stream network modelling using lidar and photogrammetric digital elevation models: a comparison and field verification , 2008 .

[35]  Nancy F. Glenn,et al.  Landsat-5 TM and Lidar Fusion for Sub-Pixel Juniper Tree Cover Estimates in a Western Rangeland , 2011 .

[36]  Pankaj K. Agarwal,et al.  From Point Cloud to Grid DEM: A Scalable Approach , 2006 .

[37]  Scott N. Wilkinson,et al.  Evaluating Shuttle radar and interpolated DEMs for slope gradient and soil erosion estimation in low relief terrain , 2013, Environ. Model. Softw..

[38]  Arlen D. Feldman,et al.  Review of GIS Applications in Hydrologic Modeling , 1993 .

[39]  Daniel P. Ames,et al.  Quantitative Methods for Comparing Different Polyline Stream Network Models , 2014 .

[40]  N. Glenn,et al.  LiDAR measurement of sagebrush steppe vegetation heights , 2006 .

[41]  Brian L. Benham,et al.  FTABLE Generation Method Effects on Instream Fecal Bacteria Concentrations Simulated With HSPF1 , 2008 .

[42]  Kang-Tsung Chang,et al.  Effects of DEM resolution and source on soil erosion modelling: a case study using the WEPP model , 2008, Int. J. Geogr. Inf. Sci..

[43]  Richard B. McCammon,et al.  Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran , 1994 .

[44]  Susan K. Jenson,et al.  Applications of hydrologic information automatically extracted from digital elevation models , 1991 .

[45]  Joseph H. A. Guillaume,et al.  Characterising performance of environmental models , 2013, Environ. Model. Softw..

[46]  Ian Moore,et al.  Digital terrain modelling in hydrology , 1991 .

[47]  Jin Teng,et al.  Impact of DEM accuracy and resolution on topographic indices , 2010, Environ. Model. Softw..

[48]  J. N. Callow,et al.  How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis , 2007 .

[49]  T. A. Costello,et al.  Effect of DEM data resolution on SWAT output uncertainty , 2005 .

[50]  K. Kraus,et al.  ADVANCED DTM GENERATION FROM LIDAR DATA , 2001 .

[51]  D. Wolock,et al.  Effects of digital elevation model map scale and data resolution on a topography‐based watershed model , 1994 .

[52]  D. Tarboton,et al.  Advances in the mapping of flow networks from digital elevation data , 2001 .

[53]  Hongyu Huang,et al.  A Comparison of Two Open Source LiDAR Surface Classification Algorithms , 2011, Remote. Sens..

[54]  Nassim Al-Abed,et al.  Hydrological Modeling of Zarqa River Basin – Jordan Using the Hydrological Simulation Program – FORTRAN (HSPF) Model , 2008 .

[55]  Boris Kompare,et al.  Environmental Modelling & Software , 2014 .

[56]  Jeffery S. Horsburgh,et al.  HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis , 2012, Environ. Model. Softw..

[57]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[58]  H. Riedwyl Goodness of Fit , 1967 .