High-order evaluation complexity for convexly-constrained optimization with non-Lipschitzian group sparsity terms

[1]  Yu Guang Wang,et al.  Isotropic sparse regularization for spherical harmonic representations of random fields on the sphere , 2020 .

[2]  Nadav Hallak,et al.  Optimization problems involving group sparsity terms , 2019, Math. Program..

[3]  Xiaojun Chen,et al.  Complexity of Partially Separable Convexly Constrained Optimization with Non-Lipschitzian Singularities , 2019, SIAM J. Optim..

[4]  S. Bellavia,et al.  Adaptive Regularization Algorithms with Inexact Evaluations for Nonconvex Optimization , 2018, SIAM J. Optim..

[5]  Stefania Bellavia,et al.  Deterministic and stochastic inexact regularization algorithms for nonconvex optimization with optimal complexity , 2018, ArXiv.

[6]  Nicholas I. M. Gould,et al.  Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints , 2018, SIAM J. Optim..

[7]  Nicholas I. M. Gould,et al.  Second-Order Optimality and Beyond: Characterization and Evaluation Complexity in Convexly Constrained Nonlinear Optimization , 2018, Found. Comput. Math..

[8]  Xiaojun Chen,et al.  Spherical Designs and Nonconvex Minimization for Recovery of Sparse Signals on the Sphere , 2018, SIAM J. Imaging Sci..

[9]  Yu Guang Wang,et al.  Sparse Isotropic Regularization for Spherical Harmonic Representations of Random Fields on the Sphere , 2018, 1801.03212.

[10]  Philippe L. Toint,et al.  WORST-CASE EVALUATION COMPLEXITY AND OPTIMALITY OF SECOND-ORDER METHODS FOR NONCONVEX SMOOTH OPTIMIZATION , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[11]  José Mario Martínez,et al.  Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models , 2017, Math. Program..

[12]  Yongdai Kim,et al.  Sparse optimization for nonconvex group penalized estimation , 2016 .

[13]  M. Vidyasagar,et al.  Error Bounds for Compressed Sensing Algorithms With Group Sparsity: A Unified Approach , 2015, 1512.08673.

[14]  Jian Huang,et al.  A Concave Pairwise Fusion Approach to Subgroup Analysis , 2015, 1508.07045.

[15]  Peter Richtárik,et al.  Distributed Block Coordinate Descent for Minimizing Partially Separable Functions , 2014, 1406.0238.

[16]  Wei Bian,et al.  Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization , 2014, Mathematical Programming.

[17]  Xiaojun Chen,et al.  Worst-Case Complexity of Smoothing Quadratic Regularization Methods for Non-Lipschitzian Optimization , 2013, SIAM J. Optim..

[18]  Xiaojun Chen,et al.  Optimality Conditions and a Smoothing Trust Region Newton Method for NonLipschitz Optimization , 2013, SIAM J. Optim..

[19]  Volkan Cevher,et al.  Group-Sparse Model Selection: Hardness and Relaxations , 2013, IEEE Transactions on Information Theory.

[20]  P. Toint,et al.  An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity , 2012 .

[21]  Jian Huang,et al.  Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors , 2012, Statistics and Computing.

[22]  Boris Polyak,et al.  Accuracy guaranties for $\ell_1$ recovery of block-sparse signals , 2011, 1111.2546.

[23]  Xiaojun Chen,et al.  Complexity of unconstrained $$L_2-L_p$$ minimization , 2011, Math. Program..

[24]  Guoan Bi,et al.  The Group Lasso for Stable Recovery of Block-Sparse Signal Representations , 2011, IEEE Transactions on Signal Processing.

[25]  Y. Ye,et al.  Lower Bound Theory of Nonzero Entries in Solutions of ℓ2-ℓp Minimization , 2010, SIAM J. Sci. Comput..

[26]  Yoram Bresler,et al.  Subspace Methods for Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[27]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[28]  Cun-Hui Zhang,et al.  A group bridge approach for variable selection , 2009, Biometrika.

[29]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[30]  Michael I. Jordan,et al.  Union support recovery in high-dimensional multivariate regression , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[31]  Nicholas I. M. Gould,et al.  FILTRANE, a Fortran 95 filter-trust-region package for solving nonlinear least-squares and nonlinear feasibility problems , 2007, TOMS.

[32]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[33]  N. Deng,et al.  Modified Partial-Update Newton-Type Algorithms for Unary Optimization , 1998 .

[34]  Nicholas I. M. Gould,et al.  Convergence Properties of Minimization Algorithms for Convex Constraints Using a Structured Trust Region , 1996, SIAM J. Optim..

[35]  Donald Goldfarb,et al.  Partial-Update Newton Methods for Unary, Factorable, and Partially Separable Optimization , 1993, SIAM J. Optim..

[36]  P. Toint,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[37]  Brian W. Kernighan,et al.  AMPL: a mathematical programming language , 1989 .

[38]  P. Toint,et al.  Global convergence of a class of trust region algorithms for optimization with simple bounds , 1988 .

[39]  Boris Polyak,et al.  Accuracy guaranties for ` 1 recovery of block-sparse signals , 2012 .

[40]  Zizhuo Wang,et al.  Complexity of Unconstrained L2-Lp Minimization , 2011 .

[41]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[42]  D. Gay Automatically Finding and Exploiting Partially Separable Structure in Nonlinear Programming Problems , 1996 .

[43]  Murray Hill Automatically Finding and Exploiting Partially Separable Structure in Nonlinear Programming Problems , 1996 .

[44]  Andreas Griewank,et al.  On the unconstrained optimization of partially separable functions , 1982 .

[45]  P. Toint,et al.  CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization , 2013, Computational Optimization and Applications.