Modeling and design of nano-plasmonic structures using transmission line modeling.

For the first time, we demonstrate the application of the time domain transmission line method (TLM) to accurate modeling of surface plasmon polariton (SPP) structures. The constructed TLM node allows for modeling of dispersive materials through simple time-difference equations. Using such node, an ultra-wide band excitation can be applied to obtain the response over the band of interest. Bérenger's perfectly matched layer (PML) boundary condition can readily be implemented using the same node. We illustrate our TLM approach through the modeling of different challenging structures including SPPs filters and focusing structures.

[1]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[2]  F. Ndagijimana,et al.  Application of the TLM technique to integrated optic component modelling , 2001 .

[3]  W.J.R. Hoefer,et al.  Modelling of general constitutive relationships in SCN TLM , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[4]  P. B. Johns,et al.  Use of the transmission-line modelling (t.l.m.) method to solve non-linear lumped networks , 1980 .

[5]  Guofeng Song,et al.  Numerical Study of a High-Resolution Far-Field Scanning Optical Microscope via a Surface Plasmon-Modulated Light Source , 2007, Journal of Lightwave Technology.

[6]  D. Miller,et al.  Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Wolfgang J. R. Hoefer,et al.  Implementation of Berenger absorbing boundary conditions in TLM by interfacing FDTD perfectly matched layers , 1995 .

[8]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[9]  Byoungho Lee,et al.  Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings , 2008 .

[10]  R. Vahldieck,et al.  A hybrid drift-diffusion-TLM analysis of traveling-wave photodetectors , 2005, IEEE Transactions on Microwave Theory and Techniques.

[11]  Chunlei Du,et al.  Focal length modulation based on a metallic slit surrounded with grooves in curved depths , 2007 .

[12]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[13]  Byoungho Lee,et al.  The use of plasmonics in light beaming and focusing , 2010 .

[14]  Shu Yuen Ron Hui,et al.  Improved TLM link model for reactive circuit components , 1996 .

[15]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[16]  Michel Ney,et al.  Matched absorbing medium techniques for full-wave tlm simulation of microwave and millimeter-wave components , 1998, Ann. des Télécommunications.

[17]  Changtao Wang,et al.  Beam manipulating by metallic nano-slits with variant widths. , 2005, Optics express.

[18]  Vitali Chtchekatourov,et al.  Modeling of MEMS capacitive switches by TLM , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[19]  C. Christopoulos,et al.  Perfectly matched layer for transmission line modelling (TLM) method , 1997 .

[20]  Bing Wang,et al.  Plasmon Bragg reflectors and nanocavities on flat metallic surfaces , 2005 .

[21]  C. Christopoulos,et al.  The application of transmission-line modeling (TLM) to electromagnetic compatibility problems , 1993 .

[22]  J.R. Brews,et al.  Transmission line models for lossy waveguide interconnections in VLSI , 1986, IEEE Transactions on Electron Devices.

[23]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[24]  Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm. , 2010, Applied optics.

[25]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[26]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[27]  Sailing He,et al.  Surface Plasmon Bragg Gratings Formed in Metal-Insulator-Metal Waveguides , 2007, IEEE Photonics Technology Letters.

[28]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[29]  Luis Martín-Moreno,et al.  Focusing light with a single subwavelength aperture flanked by surface corrugations , 2003 .

[30]  C. Christopoulos,et al.  Generalized material models in TLM .I. Materials with frequency-dependent properties , 1999 .

[31]  Zongfu Yu,et al.  Planar metallic nanoscale slit lenses for angle compensation , 2009 .

[32]  J. Wilkinson,et al.  Waveguide surface plasmon resonance sensors , 1995 .

[33]  Yehia Massoud,et al.  Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. , 2008, Optics express.

[34]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[35]  L.R.A.X. de Menezes,et al.  Modeling frequency dependent dielectrics in TLM , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[36]  Zhijun Sun,et al.  Refractive transmission of light and beam shaping with metallic nano-optic lenses , 2004 .

[37]  C. K. Lee,et al.  Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings. , 2006, Optics express.

[38]  Peter B. Johns,et al.  Numerical solution of 2-dimensional scattering problems using a transmission-line matrix , 1971 .

[39]  Byoungho Lee,et al.  High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. , 2008, Optics express.

[40]  P. Johns A Symmetrical Condensed Node for the TLM Method , 1987 .